![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rmoimi2 | GIF version |
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
rmoimi2.1 | ⊢ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) |
Ref | Expression |
---|---|
rmoimi2 | ⊢ (∃*𝑥 ∈ 𝐵 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoimi2.1 | . . 3 ⊢ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
2 | moim 2102 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | df-rmo 2476 | . 2 ⊢ (∃*𝑥 ∈ 𝐵 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
5 | df-rmo 2476 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 3, 4, 5 | 3imtr4i 201 | 1 ⊢ (∃*𝑥 ∈ 𝐵 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃*wmo 2039 ∈ wcel 2160 ∃*wrmo 2471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-rmo 2476 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |