ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoimi2 GIF version

Theorem rmoimi2 3006
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
rmoimi2.1 𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
rmoimi2 (∃*𝑥𝐵 𝜓 → ∃*𝑥𝐴 𝜑)

Proof of Theorem rmoimi2
StepHypRef Expression
1 rmoimi2.1 . . 3 𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
2 moim 2142 . . 3 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓)) → (∃*𝑥(𝑥𝐵𝜓) → ∃*𝑥(𝑥𝐴𝜑)))
31, 2ax-mp 5 . 2 (∃*𝑥(𝑥𝐵𝜓) → ∃*𝑥(𝑥𝐴𝜑))
4 df-rmo 2516 . 2 (∃*𝑥𝐵 𝜓 ↔ ∃*𝑥(𝑥𝐵𝜓))
5 df-rmo 2516 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
63, 4, 53imtr4i 201 1 (∃*𝑥𝐵 𝜓 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393  ∃*wmo 2078  wcel 2200  ∃*wrmo 2511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-rmo 2516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator