| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rmoimi2 | GIF version | ||
| Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| rmoimi2.1 | ⊢ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| rmoimi2 | ⊢ (∃*𝑥 ∈ 𝐵 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoimi2.1 | . . 3 ⊢ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 2 | moim 2109 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | df-rmo 2483 | . 2 ⊢ (∃*𝑥 ∈ 𝐵 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 5 | df-rmo 2483 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4i 201 | 1 ⊢ (∃*𝑥 ∈ 𝐵 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃*wmo 2046 ∈ wcel 2167 ∃*wrmo 2478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-rmo 2483 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |