ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoimi2 GIF version

Theorem rmoimi2 2890
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
rmoimi2.1 𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
rmoimi2 (∃*𝑥𝐵 𝜓 → ∃*𝑥𝐴 𝜑)

Proof of Theorem rmoimi2
StepHypRef Expression
1 rmoimi2.1 . . 3 𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
2 moim 2064 . . 3 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓)) → (∃*𝑥(𝑥𝐵𝜓) → ∃*𝑥(𝑥𝐴𝜑)))
31, 2ax-mp 5 . 2 (∃*𝑥(𝑥𝐵𝜓) → ∃*𝑥(𝑥𝐴𝜑))
4 df-rmo 2425 . 2 (∃*𝑥𝐵 𝜓 ↔ ∃*𝑥(𝑥𝐵𝜓))
5 df-rmo 2425 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
63, 4, 53imtr4i 200 1 (∃*𝑥𝐵 𝜓 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1330  wcel 1481  ∃*wmo 2001  ∃*wrmo 2420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-rmo 2425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator