ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moim Unicode version

Theorem moim 2083
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moim  |-  ( A. x ( ph  ->  ps )  ->  ( E* x ps  ->  E* x ph ) )

Proof of Theorem moim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfa1 1534 . . 3  |-  F/ x A. x ( ph  ->  ps )
2 ax-4 1503 . . . . . 6  |-  ( A. x ( ph  ->  ps )  ->  ( ph  ->  ps ) )
3 spsbim 1836 . . . . . 6  |-  ( A. x ( ph  ->  ps )  ->  ( [
y  /  x ] ph  ->  [ y  /  x ] ps ) )
42, 3anim12d 333 . . . . 5  |-  ( A. x ( ph  ->  ps )  ->  ( ( ph  /\  [ y  /  x ] ph )  -> 
( ps  /\  [
y  /  x ] ps ) ) )
54imim1d 75 . . . 4  |-  ( A. x ( ph  ->  ps )  ->  ( (
( ps  /\  [
y  /  x ] ps )  ->  x  =  y )  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
65alimdv 1872 . . 3  |-  ( A. x ( ph  ->  ps )  ->  ( A. y ( ( ps 
/\  [ y  /  x ] ps )  ->  x  =  y )  ->  A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
71, 6alimd 1514 . 2  |-  ( A. x ( ph  ->  ps )  ->  ( A. x A. y ( ( ps  /\  [ y  /  x ] ps )  ->  x  =  y )  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
8 ax-17 1519 . . 3  |-  ( ps 
->  A. y ps )
98mo3h 2072 . 2  |-  ( E* x ps  <->  A. x A. y ( ( ps 
/\  [ y  /  x ] ps )  ->  x  =  y )
)
10 ax-17 1519 . . 3  |-  ( ph  ->  A. y ph )
1110mo3h 2072 . 2  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
127, 9, 113imtr4g 204 1  |-  ( A. x ( ph  ->  ps )  ->  ( E* x ps  ->  E* x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346   [wsb 1755   E*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  moimi  2084  euimmo  2086  moexexdc  2103  euexex  2104  rmoim  2931  rmoimi2  2933  ssrmof  3210  disjss1  3972  reusv1  4443  funmo  5213  uptx  13068
  Copyright terms: Public domain W3C validator