ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moim Unicode version

Theorem moim 2070
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moim  |-  ( A. x ( ph  ->  ps )  ->  ( E* x ps  ->  E* x ph ) )

Proof of Theorem moim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfa1 1521 . . 3  |-  F/ x A. x ( ph  ->  ps )
2 ax-4 1490 . . . . . 6  |-  ( A. x ( ph  ->  ps )  ->  ( ph  ->  ps ) )
3 spsbim 1823 . . . . . 6  |-  ( A. x ( ph  ->  ps )  ->  ( [
y  /  x ] ph  ->  [ y  /  x ] ps ) )
42, 3anim12d 333 . . . . 5  |-  ( A. x ( ph  ->  ps )  ->  ( ( ph  /\  [ y  /  x ] ph )  -> 
( ps  /\  [
y  /  x ] ps ) ) )
54imim1d 75 . . . 4  |-  ( A. x ( ph  ->  ps )  ->  ( (
( ps  /\  [
y  /  x ] ps )  ->  x  =  y )  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
65alimdv 1859 . . 3  |-  ( A. x ( ph  ->  ps )  ->  ( A. y ( ( ps 
/\  [ y  /  x ] ps )  ->  x  =  y )  ->  A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
71, 6alimd 1501 . 2  |-  ( A. x ( ph  ->  ps )  ->  ( A. x A. y ( ( ps  /\  [ y  /  x ] ps )  ->  x  =  y )  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
8 ax-17 1506 . . 3  |-  ( ps 
->  A. y ps )
98mo3h 2059 . 2  |-  ( E* x ps  <->  A. x A. y ( ( ps 
/\  [ y  /  x ] ps )  ->  x  =  y )
)
10 ax-17 1506 . . 3  |-  ( ph  ->  A. y ph )
1110mo3h 2059 . 2  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
127, 9, 113imtr4g 204 1  |-  ( A. x ( ph  ->  ps )  ->  ( E* x ps  ->  E* x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1333   [wsb 1742   E*wmo 2007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010
This theorem is referenced by:  moimi  2071  euimmo  2073  moexexdc  2090  euexex  2091  rmoim  2913  rmoimi2  2915  ssrmof  3191  disjss1  3948  reusv1  4416  funmo  5182  uptx  12634
  Copyright terms: Public domain W3C validator