| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2reuswapdc | Unicode version | ||
| Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.) | 
| Ref | Expression | 
|---|---|
| 2reuswapdc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rmo 2483 | 
. . 3
 | |
| 2 | 1 | ralbii 2503 | 
. 2
 | 
| 3 | df-ral 2480 | 
. . . 4
 | |
| 4 | moanimv 2120 | 
. . . . 5
 | |
| 5 | 4 | albii 1484 | 
. . . 4
 | 
| 6 | 3, 5 | bitr4i 187 | 
. . 3
 | 
| 7 | df-reu 2482 | 
. . . . . 6
 | |
| 8 | r19.42v 2654 | 
. . . . . . . . 9
 | |
| 9 | df-rex 2481 | 
. . . . . . . . 9
 | |
| 10 | 8, 9 | bitr3i 186 | 
. . . . . . . 8
 | 
| 11 | an12 561 | 
. . . . . . . . 9
 | |
| 12 | 11 | exbii 1619 | 
. . . . . . . 8
 | 
| 13 | 10, 12 | bitri 184 | 
. . . . . . 7
 | 
| 14 | 13 | eubii 2054 | 
. . . . . 6
 | 
| 15 | 7, 14 | bitri 184 | 
. . . . 5
 | 
| 16 | 2euswapdc 2136 | 
. . . . 5
 | |
| 17 | 15, 16 | syl7bi 165 | 
. . . 4
 | 
| 18 | df-reu 2482 | 
. . . . . 6
 | |
| 19 | r19.42v 2654 | 
. . . . . . . 8
 | |
| 20 | df-rex 2481 | 
. . . . . . . 8
 | |
| 21 | 19, 20 | bitr3i 186 | 
. . . . . . 7
 | 
| 22 | 21 | eubii 2054 | 
. . . . . 6
 | 
| 23 | 18, 22 | bitri 184 | 
. . . . 5
 | 
| 24 | 23 | imbi2i 226 | 
. . . 4
 | 
| 25 | 17, 24 | imbitrrdi 162 | 
. . 3
 | 
| 26 | 6, 25 | biimtrid 152 | 
. 2
 | 
| 27 | 2, 26 | biimtrid 152 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |