| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2reuswapdc | Unicode version | ||
| Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2reuswapdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 2492 |
. . 3
| |
| 2 | 1 | ralbii 2512 |
. 2
|
| 3 | df-ral 2489 |
. . . 4
| |
| 4 | moanimv 2129 |
. . . . 5
| |
| 5 | 4 | albii 1493 |
. . . 4
|
| 6 | 3, 5 | bitr4i 187 |
. . 3
|
| 7 | df-reu 2491 |
. . . . . 6
| |
| 8 | r19.42v 2663 |
. . . . . . . . 9
| |
| 9 | df-rex 2490 |
. . . . . . . . 9
| |
| 10 | 8, 9 | bitr3i 186 |
. . . . . . . 8
|
| 11 | an12 561 |
. . . . . . . . 9
| |
| 12 | 11 | exbii 1628 |
. . . . . . . 8
|
| 13 | 10, 12 | bitri 184 |
. . . . . . 7
|
| 14 | 13 | eubii 2063 |
. . . . . 6
|
| 15 | 7, 14 | bitri 184 |
. . . . 5
|
| 16 | 2euswapdc 2145 |
. . . . 5
| |
| 17 | 15, 16 | syl7bi 165 |
. . . 4
|
| 18 | df-reu 2491 |
. . . . . 6
| |
| 19 | r19.42v 2663 |
. . . . . . . 8
| |
| 20 | df-rex 2490 |
. . . . . . . 8
| |
| 21 | 19, 20 | bitr3i 186 |
. . . . . . 7
|
| 22 | 21 | eubii 2063 |
. . . . . 6
|
| 23 | 18, 22 | bitri 184 |
. . . . 5
|
| 24 | 23 | imbi2i 226 |
. . . 4
|
| 25 | 17, 24 | imbitrrdi 162 |
. . 3
|
| 26 | 6, 25 | biimtrid 152 |
. 2
|
| 27 | 2, 26 | biimtrid 152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |