Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2reuswapdc | Unicode version |
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
2reuswapdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 2461 | . . 3 | |
2 | 1 | ralbii 2481 | . 2 |
3 | df-ral 2458 | . . . 4 | |
4 | moanimv 2099 | . . . . 5 | |
5 | 4 | albii 1468 | . . . 4 |
6 | 3, 5 | bitr4i 187 | . . 3 |
7 | df-reu 2460 | . . . . . 6 | |
8 | r19.42v 2632 | . . . . . . . . 9 | |
9 | df-rex 2459 | . . . . . . . . 9 | |
10 | 8, 9 | bitr3i 186 | . . . . . . . 8 |
11 | an12 561 | . . . . . . . . 9 | |
12 | 11 | exbii 1603 | . . . . . . . 8 |
13 | 10, 12 | bitri 184 | . . . . . . 7 |
14 | 13 | eubii 2033 | . . . . . 6 |
15 | 7, 14 | bitri 184 | . . . . 5 |
16 | 2euswapdc 2115 | . . . . 5 DECID | |
17 | 15, 16 | syl7bi 165 | . . . 4 DECID |
18 | df-reu 2460 | . . . . . 6 | |
19 | r19.42v 2632 | . . . . . . . 8 | |
20 | df-rex 2459 | . . . . . . . 8 | |
21 | 19, 20 | bitr3i 186 | . . . . . . 7 |
22 | 21 | eubii 2033 | . . . . . 6 |
23 | 18, 22 | bitri 184 | . . . . 5 |
24 | 23 | imbi2i 226 | . . . 4 |
25 | 17, 24 | syl6ibr 162 | . . 3 DECID |
26 | 6, 25 | biimtrid 152 | . 2 DECID |
27 | 2, 26 | biimtrid 152 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 DECID wdc 834 wal 1351 wex 1490 weu 2024 wmo 2025 wcel 2146 wral 2453 wrex 2454 wreu 2455 wrmo 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |