Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2reuswapdc | Unicode version |
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
2reuswapdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 2456 | . . 3 | |
2 | 1 | ralbii 2476 | . 2 |
3 | df-ral 2453 | . . . 4 | |
4 | moanimv 2094 | . . . . 5 | |
5 | 4 | albii 1463 | . . . 4 |
6 | 3, 5 | bitr4i 186 | . . 3 |
7 | df-reu 2455 | . . . . . 6 | |
8 | r19.42v 2627 | . . . . . . . . 9 | |
9 | df-rex 2454 | . . . . . . . . 9 | |
10 | 8, 9 | bitr3i 185 | . . . . . . . 8 |
11 | an12 556 | . . . . . . . . 9 | |
12 | 11 | exbii 1598 | . . . . . . . 8 |
13 | 10, 12 | bitri 183 | . . . . . . 7 |
14 | 13 | eubii 2028 | . . . . . 6 |
15 | 7, 14 | bitri 183 | . . . . 5 |
16 | 2euswapdc 2110 | . . . . 5 DECID | |
17 | 15, 16 | syl7bi 164 | . . . 4 DECID |
18 | df-reu 2455 | . . . . . 6 | |
19 | r19.42v 2627 | . . . . . . . 8 | |
20 | df-rex 2454 | . . . . . . . 8 | |
21 | 19, 20 | bitr3i 185 | . . . . . . 7 |
22 | 21 | eubii 2028 | . . . . . 6 |
23 | 18, 22 | bitri 183 | . . . . 5 |
24 | 23 | imbi2i 225 | . . . 4 |
25 | 17, 24 | syl6ibr 161 | . . 3 DECID |
26 | 6, 25 | syl5bi 151 | . 2 DECID |
27 | 2, 26 | syl5bi 151 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 DECID wdc 829 wal 1346 wex 1485 weu 2019 wmo 2020 wcel 2141 wral 2448 wrex 2449 wreu 2450 wrmo 2451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |