ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcedeq1vd Unicode version

Theorem rspcedeq1vd 2873
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 2870 for equations, in which the left hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.)
Hypotheses
Ref Expression
rspcedeqvd.1  |-  ( ph  ->  A  e.  B )
rspcedeqvd.2  |-  ( (
ph  /\  x  =  A )  ->  C  =  D )
Assertion
Ref Expression
rspcedeq1vd  |-  ( ph  ->  E. x  e.  B  C  =  D )
Distinct variable groups:    x, A    x, B    ph, x    x, D
Allowed substitution hint:    C( x)

Proof of Theorem rspcedeq1vd
StepHypRef Expression
1 rspcedeqvd.1 . 2  |-  ( ph  ->  A  e.  B )
2 rspcedeqvd.2 . . 3  |-  ( (
ph  /\  x  =  A )  ->  C  =  D )
32eqeq1d 2202 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( C  =  D  <->  D  =  D ) )
4 eqidd 2194 . 2  |-  ( ph  ->  D  =  D )
51, 3, 4rspcedvd 2870 1  |-  ( ph  ->  E. x  e.  B  C  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator