ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspceaimv Unicode version

Theorem rspceaimv 2892
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
Hypothesis
Ref Expression
rspceaimv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspceaimv  |-  ( ( A  e.  B  /\  A. y  e.  C  ( ps  ->  ch )
)  ->  E. x  e.  B  A. y  e.  C  ( ph  ->  ch ) )
Distinct variable groups:    x, y, A   
x, B    x, C    ps, x    ch, x
Allowed substitution hints:    ph( x, y)    ps( y)    ch( y)    B( y)    C( y)

Proof of Theorem rspceaimv
StepHypRef Expression
1 rspceaimv.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21imbi1d 231 . . 3  |-  ( x  =  A  ->  (
( ph  ->  ch )  <->  ( ps  ->  ch )
) )
32ralbidv 2508 . 2  |-  ( x  =  A  ->  ( A. y  e.  C  ( ph  ->  ch )  <->  A. y  e.  C  ( ps  ->  ch )
) )
43rspcev 2884 1  |-  ( ( A  e.  B  /\  A. y  e.  C  ( ps  ->  ch )
)  ->  E. x  e.  B  A. y  e.  C  ( ph  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778
This theorem is referenced by:  brimralrspcev  4119  reccn2ap  11739  mplsubgfilemm  14575  mplsubgfilemcl  14576  metcnpi3  15104  elcncf1di  15166  mulcncflem  15194  limccnp2lem  15263
  Copyright terms: Public domain W3C validator