Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspceaimv Unicode version

Theorem rspceaimv 2798
 Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
Hypothesis
Ref Expression
rspceaimv.1
Assertion
Ref Expression
rspceaimv
Distinct variable groups:   ,,   ,   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()   ()   ()

Proof of Theorem rspceaimv
StepHypRef Expression
1 rspceaimv.1 . . . 4
21imbi1d 230 . . 3
32ralbidv 2438 . 2
43rspcev 2790 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104   wceq 1332   wcel 1481  wral 2417  wrex 2418 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2689 This theorem is referenced by:  brimralrspcev  3991  reccn2ap  11110  metcnpi3  12716  elcncf1di  12765  mulcncflem  12789  limccnp2lem  12844
 Copyright terms: Public domain W3C validator