ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspceaimv Unicode version

Theorem rspceaimv 2842
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
Hypothesis
Ref Expression
rspceaimv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspceaimv  |-  ( ( A  e.  B  /\  A. y  e.  C  ( ps  ->  ch )
)  ->  E. x  e.  B  A. y  e.  C  ( ph  ->  ch ) )
Distinct variable groups:    x, y, A   
x, B    x, C    ps, x    ch, x
Allowed substitution hints:    ph( x, y)    ps( y)    ch( y)    B( y)    C( y)

Proof of Theorem rspceaimv
StepHypRef Expression
1 rspceaimv.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21imbi1d 230 . . 3  |-  ( x  =  A  ->  (
( ph  ->  ch )  <->  ( ps  ->  ch )
) )
32ralbidv 2470 . 2  |-  ( x  =  A  ->  ( A. y  e.  C  ( ph  ->  ch )  <->  A. y  e.  C  ( ps  ->  ch )
) )
43rspcev 2834 1  |-  ( ( A  e.  B  /\  A. y  e.  C  ( ps  ->  ch )
)  ->  E. x  e.  B  A. y  e.  C  ( ph  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732
This theorem is referenced by:  brimralrspcev  4048  reccn2ap  11276  metcnpi3  13311  elcncf1di  13360  mulcncflem  13384  limccnp2lem  13439
  Copyright terms: Public domain W3C validator