ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspceaimv Unicode version

Theorem rspceaimv 2876
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
Hypothesis
Ref Expression
rspceaimv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspceaimv  |-  ( ( A  e.  B  /\  A. y  e.  C  ( ps  ->  ch )
)  ->  E. x  e.  B  A. y  e.  C  ( ph  ->  ch ) )
Distinct variable groups:    x, y, A   
x, B    x, C    ps, x    ch, x
Allowed substitution hints:    ph( x, y)    ps( y)    ch( y)    B( y)    C( y)

Proof of Theorem rspceaimv
StepHypRef Expression
1 rspceaimv.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21imbi1d 231 . . 3  |-  ( x  =  A  ->  (
( ph  ->  ch )  <->  ( ps  ->  ch )
) )
32ralbidv 2497 . 2  |-  ( x  =  A  ->  ( A. y  e.  C  ( ph  ->  ch )  <->  A. y  e.  C  ( ps  ->  ch )
) )
43rspcev 2868 1  |-  ( ( A  e.  B  /\  A. y  e.  C  ( ps  ->  ch )
)  ->  E. x  e.  B  A. y  e.  C  ( ph  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765
This theorem is referenced by:  brimralrspcev  4092  reccn2ap  11478  metcnpi3  14753  elcncf1di  14815  mulcncflem  14843  limccnp2lem  14912
  Copyright terms: Public domain W3C validator