ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspceaimv Unicode version

Theorem rspceaimv 2915
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
Hypothesis
Ref Expression
rspceaimv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspceaimv  |-  ( ( A  e.  B  /\  A. y  e.  C  ( ps  ->  ch )
)  ->  E. x  e.  B  A. y  e.  C  ( ph  ->  ch ) )
Distinct variable groups:    x, y, A   
x, B    x, C    ps, x    ch, x
Allowed substitution hints:    ph( x, y)    ps( y)    ch( y)    B( y)    C( y)

Proof of Theorem rspceaimv
StepHypRef Expression
1 rspceaimv.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21imbi1d 231 . . 3  |-  ( x  =  A  ->  (
( ph  ->  ch )  <->  ( ps  ->  ch )
) )
32ralbidv 2530 . 2  |-  ( x  =  A  ->  ( A. y  e.  C  ( ph  ->  ch )  <->  A. y  e.  C  ( ps  ->  ch )
) )
43rspcev 2907 1  |-  ( ( A  e.  B  /\  A. y  e.  C  ( ps  ->  ch )
)  ->  E. x  e.  B  A. y  e.  C  ( ph  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801
This theorem is referenced by:  brimralrspcev  4143  reccn2ap  11824  mplsubgfilemm  14662  mplsubgfilemcl  14663  metcnpi3  15191  elcncf1di  15253  mulcncflem  15281  limccnp2lem  15350
  Copyright terms: Public domain W3C validator