ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcedeq2vd Unicode version

Theorem rspcedeq2vd 2863
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 2859 for equations, in which the right hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.)
Hypotheses
Ref Expression
rspcedeqvd.1  |-  ( ph  ->  A  e.  B )
rspcedeqvd.2  |-  ( (
ph  /\  x  =  A )  ->  C  =  D )
Assertion
Ref Expression
rspcedeq2vd  |-  ( ph  ->  E. x  e.  B  C  =  D )
Distinct variable groups:    x, A    x, B    ph, x    x, C
Allowed substitution hint:    D( x)

Proof of Theorem rspcedeq2vd
StepHypRef Expression
1 rspcedeqvd.1 . 2  |-  ( ph  ->  A  e.  B )
2 rspcedeqvd.2 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  C  =  D )
32eqcomd 2193 . . 3  |-  ( (
ph  /\  x  =  A )  ->  D  =  C )
43eqeq2d 2199 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( C  =  D  <->  C  =  C ) )
5 eqidd 2188 . 2  |-  ( ph  ->  C  =  C )
61, 4, 5rspcedvd 2859 1  |-  ( ph  ->  E. x  e.  B  C  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   E.wrex 2466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-v 2751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator