ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcedeq2vd Unicode version

Theorem rspcedeq2vd 2840
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 2836 for equations, in which the right hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.)
Hypotheses
Ref Expression
rspcedeqvd.1  |-  ( ph  ->  A  e.  B )
rspcedeqvd.2  |-  ( (
ph  /\  x  =  A )  ->  C  =  D )
Assertion
Ref Expression
rspcedeq2vd  |-  ( ph  ->  E. x  e.  B  C  =  D )
Distinct variable groups:    x, A    x, B    ph, x    x, C
Allowed substitution hint:    D( x)

Proof of Theorem rspcedeq2vd
StepHypRef Expression
1 rspcedeqvd.1 . 2  |-  ( ph  ->  A  e.  B )
2 rspcedeqvd.2 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  C  =  D )
32eqcomd 2171 . . 3  |-  ( (
ph  /\  x  =  A )  ->  D  =  C )
43eqeq2d 2177 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( C  =  D  <->  C  =  C ) )
5 eqidd 2166 . 2  |-  ( ph  ->  C  =  C )
61, 4, 5rspcedvd 2836 1  |-  ( ph  ->  E. x  e.  B  C  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator