![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspcedvd | Unicode version |
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2869. (Contributed by AV, 27-Nov-2019.) |
Ref | Expression |
---|---|
rspcedvd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
rspcedvd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
rspcedvd.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rspcedvd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedvd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | rspcedvd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | rspcedvd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | rspcedv 2869 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 |
This theorem is referenced by: rspcime 2872 rspcedeq1vd 2874 rspcedeq2vd 2875 updjud 7143 elpq 9717 modqmuladd 10440 modqmuladdnn0 10442 modfzo0difsn 10469 negfi 11374 divconjdvds 11994 2tp1odd 12028 dfgcd2 12154 qredeu 12238 pw2dvdslemn 12306 dvdsprmpweq 12476 oddprmdvds 12495 gsumfzval 12977 gsumval2 12983 isnsgrp 12992 dfgrp2 13102 grplrinv 13132 grpidinv 13134 dfgrp3m 13174 ringid 13525 xmettx 14689 gausslemma2dlem1a 15215 2lgslem1b 15246 bj-charfunbi 15373 |
Copyright terms: Public domain | W3C validator |