| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rspcedvd | Unicode version | ||
| Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2872. (Contributed by AV, 27-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| rspcedvd.1 | 
 | 
| rspcedvd.2 | 
 | 
| rspcedvd.3 | 
 | 
| Ref | Expression | 
|---|---|
| rspcedvd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rspcedvd.3 | 
. 2
 | |
| 2 | rspcedvd.1 | 
. . 3
 | |
| 3 | rspcedvd.2 | 
. . 3
 | |
| 4 | 2, 3 | rspcedv 2872 | 
. 2
 | 
| 5 | 1, 4 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 | 
| This theorem is referenced by: rspcime 2875 rspcedeq1vd 2877 rspcedeq2vd 2878 updjud 7148 elpq 9723 modqmuladd 10458 modqmuladdnn0 10460 modfzo0difsn 10487 negfi 11393 divconjdvds 12014 2tp1odd 12049 dfgcd2 12181 qredeu 12265 pw2dvdslemn 12333 dvdsprmpweq 12504 oddprmdvds 12523 gsumfzval 13034 gsumval2 13040 isnsgrp 13049 dfgrp2 13159 grplrinv 13189 grpidinv 13191 dfgrp3m 13231 ringid 13582 xmettx 14746 gausslemma2dlem1a 15299 2lgslem1b 15330 bj-charfunbi 15457 | 
| Copyright terms: Public domain | W3C validator |