| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcedvd | Unicode version | ||
| Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2911. (Contributed by AV, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| rspcedvd.1 |
|
| rspcedvd.2 |
|
| rspcedvd.3 |
|
| Ref | Expression |
|---|---|
| rspcedvd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcedvd.3 |
. 2
| |
| 2 | rspcedvd.1 |
. . 3
| |
| 3 | rspcedvd.2 |
. . 3
| |
| 4 | 2, 3 | rspcedv 2911 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 |
| This theorem is referenced by: rspcime 2914 rspcedeq1vd 2916 rspcedeq2vd 2917 updjud 7245 elpq 9840 modqmuladd 10583 modqmuladdnn0 10585 modfzo0difsn 10612 wrdl1exs1 11157 negfi 11734 divconjdvds 12355 2tp1odd 12390 dfgcd2 12530 qredeu 12614 pw2dvdslemn 12682 dvdsprmpweq 12853 oddprmdvds 12872 gsumfzval 13419 gsumval2 13425 isnsgrp 13434 dfgrp2 13555 grplrinv 13585 grpidinv 13587 dfgrp3m 13627 ringid 13984 xmettx 15178 gausslemma2dlem1a 15731 2lgslem1b 15762 usgredg4 16007 wlkvtxiedgg 16042 bj-charfunbi 16132 |
| Copyright terms: Public domain | W3C validator |