| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcedvd | Unicode version | ||
| Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2888. (Contributed by AV, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| rspcedvd.1 |
|
| rspcedvd.2 |
|
| rspcedvd.3 |
|
| Ref | Expression |
|---|---|
| rspcedvd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcedvd.3 |
. 2
| |
| 2 | rspcedvd.1 |
. . 3
| |
| 3 | rspcedvd.2 |
. . 3
| |
| 4 | 2, 3 | rspcedv 2888 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 |
| This theorem is referenced by: rspcime 2891 rspcedeq1vd 2893 rspcedeq2vd 2894 updjud 7210 elpq 9805 modqmuladd 10548 modqmuladdnn0 10550 modfzo0difsn 10577 wrdl1exs1 11121 negfi 11654 divconjdvds 12275 2tp1odd 12310 dfgcd2 12450 qredeu 12534 pw2dvdslemn 12602 dvdsprmpweq 12773 oddprmdvds 12792 gsumfzval 13338 gsumval2 13344 isnsgrp 13353 dfgrp2 13474 grplrinv 13504 grpidinv 13506 dfgrp3m 13546 ringid 13903 xmettx 15097 gausslemma2dlem1a 15650 2lgslem1b 15681 bj-charfunbi 15946 |
| Copyright terms: Public domain | W3C validator |