| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcedvd | Unicode version | ||
| Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2881. (Contributed by AV, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| rspcedvd.1 |
|
| rspcedvd.2 |
|
| rspcedvd.3 |
|
| Ref | Expression |
|---|---|
| rspcedvd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcedvd.3 |
. 2
| |
| 2 | rspcedvd.1 |
. . 3
| |
| 3 | rspcedvd.2 |
. . 3
| |
| 4 | 2, 3 | rspcedv 2881 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 |
| This theorem is referenced by: rspcime 2884 rspcedeq1vd 2886 rspcedeq2vd 2887 updjud 7184 elpq 9770 modqmuladd 10511 modqmuladdnn0 10513 modfzo0difsn 10540 wrdl1exs1 11083 negfi 11539 divconjdvds 12160 2tp1odd 12195 dfgcd2 12335 qredeu 12419 pw2dvdslemn 12487 dvdsprmpweq 12658 oddprmdvds 12677 gsumfzval 13223 gsumval2 13229 isnsgrp 13238 dfgrp2 13359 grplrinv 13389 grpidinv 13391 dfgrp3m 13431 ringid 13788 xmettx 14982 gausslemma2dlem1a 15535 2lgslem1b 15566 bj-charfunbi 15747 |
| Copyright terms: Public domain | W3C validator |