Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspcedvd | Unicode version |
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2838. (Contributed by AV, 27-Nov-2019.) |
Ref | Expression |
---|---|
rspcedvd.1 | |
rspcedvd.2 | |
rspcedvd.3 |
Ref | Expression |
---|---|
rspcedvd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedvd.3 | . 2 | |
2 | rspcedvd.1 | . . 3 | |
3 | rspcedvd.2 | . . 3 | |
4 | 2, 3 | rspcedv 2838 | . 2 |
5 | 1, 4 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 |
This theorem is referenced by: rspcime 2841 rspcedeq1vd 2843 rspcedeq2vd 2844 updjud 7059 elpq 9607 modqmuladd 10322 modqmuladdnn0 10324 modfzo0difsn 10351 negfi 11191 divconjdvds 11809 2tp1odd 11843 dfgcd2 11969 qredeu 12051 pw2dvdslemn 12119 dvdsprmpweq 12288 oddprmdvds 12306 isnsgrp 12647 dfgrp2 12732 grplrinv 12757 grpidinv 12759 xmettx 13304 bj-charfunbi 13846 |
Copyright terms: Public domain | W3C validator |