ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcedvd Unicode version

Theorem rspcedvd 2840
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2838. (Contributed by AV, 27-Nov-2019.)
Hypotheses
Ref Expression
rspcedvd.1  |-  ( ph  ->  A  e.  B )
rspcedvd.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
rspcedvd.3  |-  ( ph  ->  ch )
Assertion
Ref Expression
rspcedvd  |-  ( ph  ->  E. x  e.  B  ps )
Distinct variable groups:    x, A    x, B    ph, x    ch, x
Allowed substitution hint:    ps( x)

Proof of Theorem rspcedvd
StepHypRef Expression
1 rspcedvd.3 . 2  |-  ( ph  ->  ch )
2 rspcedvd.1 . . 3  |-  ( ph  ->  A  e.  B )
3 rspcedvd.2 . . 3  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
42, 3rspcedv 2838 . 2  |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps )
)
51, 4mpd 13 1  |-  ( ph  ->  E. x  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732
This theorem is referenced by:  rspcime  2841  rspcedeq1vd  2843  rspcedeq2vd  2844  updjud  7059  elpq  9607  modqmuladd  10322  modqmuladdnn0  10324  modfzo0difsn  10351  negfi  11191  divconjdvds  11809  2tp1odd  11843  dfgcd2  11969  qredeu  12051  pw2dvdslemn  12119  dvdsprmpweq  12288  oddprmdvds  12306  isnsgrp  12647  dfgrp2  12732  grplrinv  12757  grpidinv  12759  xmettx  13304  bj-charfunbi  13846
  Copyright terms: Public domain W3C validator