| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcedvd | Unicode version | ||
| Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2880. (Contributed by AV, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| rspcedvd.1 |
|
| rspcedvd.2 |
|
| rspcedvd.3 |
|
| Ref | Expression |
|---|---|
| rspcedvd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcedvd.3 |
. 2
| |
| 2 | rspcedvd.1 |
. . 3
| |
| 3 | rspcedvd.2 |
. . 3
| |
| 4 | 2, 3 | rspcedv 2880 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 |
| This theorem is referenced by: rspcime 2883 rspcedeq1vd 2885 rspcedeq2vd 2886 updjud 7183 elpq 9769 modqmuladd 10509 modqmuladdnn0 10511 modfzo0difsn 10538 wrdl1exs1 11081 negfi 11510 divconjdvds 12131 2tp1odd 12166 dfgcd2 12306 qredeu 12390 pw2dvdslemn 12458 dvdsprmpweq 12629 oddprmdvds 12648 gsumfzval 13194 gsumval2 13200 isnsgrp 13209 dfgrp2 13330 grplrinv 13360 grpidinv 13362 dfgrp3m 13402 ringid 13759 xmettx 14953 gausslemma2dlem1a 15506 2lgslem1b 15537 bj-charfunbi 15709 |
| Copyright terms: Public domain | W3C validator |