Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspcedvd | Unicode version |
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2820. (Contributed by AV, 27-Nov-2019.) |
Ref | Expression |
---|---|
rspcedvd.1 | |
rspcedvd.2 | |
rspcedvd.3 |
Ref | Expression |
---|---|
rspcedvd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedvd.3 | . 2 | |
2 | rspcedvd.1 | . . 3 | |
3 | rspcedvd.2 | . . 3 | |
4 | 2, 3 | rspcedv 2820 | . 2 |
5 | 1, 4 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wrex 2436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 |
This theorem is referenced by: rspcime 2823 rspcedeq1vd 2825 rspcedeq2vd 2826 updjud 7016 elpq 9539 modqmuladd 10247 modqmuladdnn0 10249 modfzo0difsn 10276 negfi 11109 divconjdvds 11722 2tp1odd 11756 dfgcd2 11878 qredeu 11954 pw2dvdslemn 12019 xmettx 12870 bj-charfunbi 13346 |
Copyright terms: Public domain | W3C validator |