Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspcedeq2vd | GIF version |
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 2836 for equations, in which the right hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.) |
Ref | Expression |
---|---|
rspcedeqvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcedeqvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
rspcedeq2vd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedeqvd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcedeqvd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) | |
3 | 2 | eqcomd 2171 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐶) |
4 | 3 | eqeq2d 2177 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐶 = 𝐷 ↔ 𝐶 = 𝐶)) |
5 | eqidd 2166 | . 2 ⊢ (𝜑 → 𝐶 = 𝐶) | |
6 | 1, 4, 5 | rspcedvd 2836 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |