ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb4b Unicode version

Theorem sb4b 1845
Description: Simplified definition of substitution when variables are distinct. (Contributed by NM, 27-May-1997.)
Assertion
Ref Expression
sb4b  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
) )

Proof of Theorem sb4b
StepHypRef Expression
1 sb4 1843 . 2  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )
2 sb2 1778 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
31, 2impbid1 142 1  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1362   [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator