| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb4or | Unicode version | ||
| Description: One direction of a simplified definition of substitution when variables are distinct. Similar to sb4 1855 but stronger in intuitionistic logic. (Contributed by Jim Kingdon, 2-Feb-2018.) |
| Ref | Expression |
|---|---|
| sb4or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equs5or 1853 |
. 2
| |
| 2 | nfe1 1519 |
. . . . . 6
| |
| 3 | nfa1 1564 |
. . . . . 6
| |
| 4 | 2, 3 | nfim 1595 |
. . . . 5
|
| 5 | 4 | nfri 1542 |
. . . 4
|
| 6 | sb1 1789 |
. . . . 5
| |
| 7 | 6 | imim1i 60 |
. . . 4
|
| 8 | 5, 7 | alrimih 1492 |
. . 3
|
| 9 | 8 | orim2i 763 |
. 2
|
| 10 | 1, 9 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: sb4bor 1858 nfsb2or 1860 |
| Copyright terms: Public domain | W3C validator |