ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbalv Unicode version

Theorem sbalv 2021
Description: Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
sbalv.1  |-  ( [ y  /  x ] ph 
<->  ps )
Assertion
Ref Expression
sbalv  |-  ( [ y  /  x ] A. z ph  <->  A. z ps )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem sbalv
StepHypRef Expression
1 sbal 2016 . 2  |-  ( [ y  /  x ] A. z ph  <->  A. z [ y  /  x ] ph )
2 sbalv.1 . . 3  |-  ( [ y  /  x ] ph 
<->  ps )
32albii 1481 . 2  |-  ( A. z [ y  /  x ] ph  <->  A. z ps )
41, 3bitri 184 1  |-  ( [ y  /  x ] A. z ph  <->  A. z ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362   [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by:  sbmo  2101  sbabel  2363  peano2  4627
  Copyright terms: Public domain W3C validator