| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2 | Unicode version | ||
| Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | simpl 109 |
. . . . . 6
| |
| 3 | eleq1 2292 |
. . . . . . . 8
| |
| 4 | suceq 4493 |
. . . . . . . . 9
| |
| 5 | 4 | eleq1d 2298 |
. . . . . . . 8
|
| 6 | 3, 5 | imbi12d 234 |
. . . . . . 7
|
| 7 | 6 | adantl 277 |
. . . . . 6
|
| 8 | df-clab 2216 |
. . . . . . . . 9
| |
| 9 | simpr 110 |
. . . . . . . . . . . 12
| |
| 10 | df-ral 2513 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | sylib 122 |
. . . . . . . . . . 11
|
| 12 | 11 | sbimi 1810 |
. . . . . . . . . 10
|
| 13 | sbim 2004 |
. . . . . . . . . . . 12
| |
| 14 | clelsb2 2335 |
. . . . . . . . . . . . 13
| |
| 15 | clelsb2 2335 |
. . . . . . . . . . . . 13
| |
| 16 | 14, 15 | imbi12i 239 |
. . . . . . . . . . . 12
|
| 17 | 13, 16 | bitri 184 |
. . . . . . . . . . 11
|
| 18 | 17 | sbalv 2056 |
. . . . . . . . . 10
|
| 19 | 12, 18 | sylib 122 |
. . . . . . . . 9
|
| 20 | 8, 19 | sylbi 121 |
. . . . . . . 8
|
| 21 | 20 | 19.21bi 1604 |
. . . . . . 7
|
| 22 | 21 | adantl 277 |
. . . . . 6
|
| 23 | nfv 1574 |
. . . . . . 7
| |
| 24 | nfv 1574 |
. . . . . . . . 9
| |
| 25 | nfra1 2561 |
. . . . . . . . 9
| |
| 26 | 24, 25 | nfan 1611 |
. . . . . . . 8
|
| 27 | 26 | nfsab 2221 |
. . . . . . 7
|
| 28 | 23, 27 | nfan 1611 |
. . . . . 6
|
| 29 | nfcvd 2373 |
. . . . . 6
| |
| 30 | nfvd 1575 |
. . . . . 6
| |
| 31 | 2, 7, 22, 28, 29, 30 | vtocldf 2852 |
. . . . 5
|
| 32 | 31 | ralrimiva 2603 |
. . . 4
|
| 33 | ralim 2589 |
. . . . 5
| |
| 34 | elintg 3931 |
. . . . . 6
| |
| 35 | sucexg 4590 |
. . . . . . 7
| |
| 36 | elintg 3931 |
. . . . . . 7
| |
| 37 | 35, 36 | syl 14 |
. . . . . 6
|
| 38 | 34, 37 | imbi12d 234 |
. . . . 5
|
| 39 | 33, 38 | imbitrrid 156 |
. . . 4
|
| 40 | 32, 39 | mpd 13 |
. . 3
|
| 41 | dfom3 4684 |
. . . 4
| |
| 42 | 41 | eleq2i 2296 |
. . 3
|
| 43 | 41 | eleq2i 2296 |
. . 3
|
| 44 | 40, 42, 43 | 3imtr4g 205 |
. 2
|
| 45 | 1, 44 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: peano5 4690 limom 4706 peano2b 4707 nnregexmid 4713 omsinds 4714 freccllem 6548 frecfcllem 6550 frecsuclem 6552 frecrdg 6554 nnacl 6626 nnacom 6630 nnmsucr 6634 nnsucsssuc 6638 nnaword 6657 1onn 6666 2onn 6667 3onn 6668 4onn 6669 nnaordex 6674 php5 7019 phplem4dom 7023 php5dom 7024 phplem4on 7029 dif1en 7041 findcard 7050 findcard2 7051 findcard2s 7052 infnfi 7057 unsnfi 7081 omp1eomlem 7261 ctmlemr 7275 nninfninc 7290 infnninf 7291 infnninfOLD 7292 nnnninf 7293 nnnninfeq 7295 nninfwlpoimlemg 7342 nninfwlpoimlemginf 7343 frec2uzrand 10627 frecuzrdgsuc 10636 frecuzrdgsuctlem 10645 frecfzennn 10648 hashunlem 11026 ennnfonelemk 12971 ennnfonelemg 12974 ennnfonelemkh 12983 ennnfonelemhf1o 12984 ennnfonelemex 12985 ennnfonelemrn 12990 ennnfonelemnn0 12993 ctinfomlemom 12998 0nninf 16370 nnsf 16371 peano4nninf 16372 nninfsellemdc 16376 nninfsellemsuc 16378 nninfself 16379 nninfsellemeqinf 16382 nnnninfex 16388 |
| Copyright terms: Public domain | W3C validator |