ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2 Unicode version

Theorem peano2 4572
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano2  |-  ( A  e.  om  ->  suc  A  e.  om )

Proof of Theorem peano2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2737 . 2  |-  ( A  e.  om  ->  A  e.  _V )
2 simpl 108 . . . . . 6  |-  ( ( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  ->  A  e.  _V )
3 eleq1 2229 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  z  <->  A  e.  z ) )
4 suceq 4380 . . . . . . . . 9  |-  ( x  =  A  ->  suc  x  =  suc  A )
54eleq1d 2235 . . . . . . . 8  |-  ( x  =  A  ->  ( suc  x  e.  z  <->  suc  A  e.  z ) )
63, 5imbi12d 233 . . . . . . 7  |-  ( x  =  A  ->  (
( x  e.  z  ->  suc  x  e.  z )  <->  ( A  e.  z  ->  suc  A  e.  z ) ) )
76adantl 275 . . . . . 6  |-  ( ( ( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  /\  x  =  A )  ->  ( (
x  e.  z  ->  suc  x  e.  z )  <-> 
( A  e.  z  ->  suc  A  e.  z ) ) )
8 df-clab 2152 . . . . . . . . 9  |-  ( z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  <->  [ z  /  y ] (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) )
9 simpr 109 . . . . . . . . . . . 12  |-  ( (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )  ->  A. x  e.  y  suc  x  e.  y )
10 df-ral 2449 . . . . . . . . . . . 12  |-  ( A. x  e.  y  suc  x  e.  y  <->  A. x
( x  e.  y  ->  suc  x  e.  y ) )
119, 10sylib 121 . . . . . . . . . . 11  |-  ( (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )  ->  A. x ( x  e.  y  ->  suc  x  e.  y )
)
1211sbimi 1752 . . . . . . . . . 10  |-  ( [ z  /  y ] ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )  ->  [ z  /  y ] A. x ( x  e.  y  ->  suc  x  e.  y ) )
13 sbim 1941 . . . . . . . . . . . 12  |-  ( [ z  /  y ] ( x  e.  y  ->  suc  x  e.  y )  <->  ( [
z  /  y ] x  e.  y  ->  [ z  /  y ] suc  x  e.  y ) )
14 clelsb2 2272 . . . . . . . . . . . . 13  |-  ( [ z  /  y ] x  e.  y  <->  x  e.  z )
15 clelsb2 2272 . . . . . . . . . . . . 13  |-  ( [ z  /  y ] suc  x  e.  y  <->  suc  x  e.  z )
1614, 15imbi12i 238 . . . . . . . . . . . 12  |-  ( ( [ z  /  y ] x  e.  y  ->  [ z  /  y ] suc  x  e.  y )  <->  ( x  e.  z  ->  suc  x  e.  z ) )
1713, 16bitri 183 . . . . . . . . . . 11  |-  ( [ z  /  y ] ( x  e.  y  ->  suc  x  e.  y )  <->  ( x  e.  z  ->  suc  x  e.  z ) )
1817sbalv 1993 . . . . . . . . . 10  |-  ( [ z  /  y ] A. x ( x  e.  y  ->  suc  x  e.  y )  <->  A. x ( x  e.  z  ->  suc  x  e.  z ) )
1912, 18sylib 121 . . . . . . . . 9  |-  ( [ z  /  y ] ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )  ->  A. x
( x  e.  z  ->  suc  x  e.  z ) )
208, 19sylbi 120 . . . . . . . 8  |-  ( z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  A. x
( x  e.  z  ->  suc  x  e.  z ) )
212019.21bi 1546 . . . . . . 7  |-  ( z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  (
x  e.  z  ->  suc  x  e.  z ) )
2221adantl 275 . . . . . 6  |-  ( ( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  ->  ( x  e.  z  ->  suc  x  e.  z ) )
23 nfv 1516 . . . . . . 7  |-  F/ x  A  e.  _V
24 nfv 1516 . . . . . . . . 9  |-  F/ x (/) 
e.  y
25 nfra1 2497 . . . . . . . . 9  |-  F/ x A. x  e.  y  suc  x  e.  y
2624, 25nfan 1553 . . . . . . . 8  |-  F/ x
( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )
2726nfsab 2157 . . . . . . 7  |-  F/ x  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }
2823, 27nfan 1553 . . . . . 6  |-  F/ x
( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )
29 nfcvd 2309 . . . . . 6  |-  ( ( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  ->  F/_ x A )
30 nfvd 1517 . . . . . 6  |-  ( ( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  ->  F/ x ( A  e.  z  ->  suc  A  e.  z ) )
312, 7, 22, 28, 29, 30vtocldf 2777 . . . . 5  |-  ( ( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  ->  ( A  e.  z  ->  suc  A  e.  z ) )
3231ralrimiva 2539 . . . 4  |-  ( A  e.  _V  ->  A. z  e.  { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ( A  e.  z  ->  suc  A  e.  z ) )
33 ralim 2525 . . . . 5  |-  ( A. z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ( A  e.  z  ->  suc 
A  e.  z )  ->  ( A. z  e.  { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } A  e.  z  ->  A. z  e.  {
y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } suc  A  e.  z ) )
34 elintg 3832 . . . . . 6  |-  ( A  e.  _V  ->  ( A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  <->  A. z  e.  { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } A  e.  z ) )
35 sucexg 4475 . . . . . . 7  |-  ( A  e.  _V  ->  suc  A  e.  _V )
36 elintg 3832 . . . . . . 7  |-  ( suc 
A  e.  _V  ->  ( suc  A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  <->  A. z  e.  { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } suc  A  e.  z ) )
3735, 36syl 14 . . . . . 6  |-  ( A  e.  _V  ->  ( suc  A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  <->  A. z  e.  { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } suc  A  e.  z ) )
3834, 37imbi12d 233 . . . . 5  |-  ( A  e.  _V  ->  (
( A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  suc 
A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  <-> 
( A. z  e. 
{ y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } A  e.  z  ->  A. z  e.  {
y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } suc  A  e.  z ) ) )
3933, 38syl5ibr 155 . . . 4  |-  ( A  e.  _V  ->  ( A. z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ( A  e.  z  ->  suc 
A  e.  z )  ->  ( A  e. 
|^| { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  suc  A  e. 
|^| { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } ) ) )
4032, 39mpd 13 . . 3  |-  ( A  e.  _V  ->  ( A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  suc 
A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } ) )
41 dfom3 4569 . . . 4  |-  om  =  |^| { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }
4241eleq2i 2233 . . 3  |-  ( A  e.  om  <->  A  e.  |^|
{ y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )
4341eleq2i 2233 . . 3  |-  ( suc 
A  e.  om  <->  suc  A  e. 
|^| { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )
4440, 42, 433imtr4g 204 . 2  |-  ( A  e.  _V  ->  ( A  e.  om  ->  suc 
A  e.  om )
)
451, 44mpcom 36 1  |-  ( A  e.  om  ->  suc  A  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343   [wsb 1750    e. wcel 2136   {cab 2151   A.wral 2444   _Vcvv 2726   (/)c0 3409   |^|cint 3824   suc csuc 4343   omcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568
This theorem is referenced by:  peano5  4575  limom  4591  peano2b  4592  nnregexmid  4598  omsinds  4599  freccllem  6370  frecfcllem  6372  frecsuclem  6374  frecrdg  6376  nnacl  6448  nnacom  6452  nnmsucr  6456  nnsucsssuc  6460  nnaword  6479  1onn  6488  2onn  6489  3onn  6490  4onn  6491  nnaordex  6495  php5  6824  phplem4dom  6828  php5dom  6829  phplem4on  6833  dif1en  6845  findcard  6854  findcard2  6855  findcard2s  6856  infnfi  6861  unsnfi  6884  omp1eomlem  7059  ctmlemr  7073  infnninf  7088  infnninfOLD  7089  nnnninf  7090  nnnninfeq  7092  frec2uzrand  10340  frecuzrdgsuc  10349  frecuzrdgsuctlem  10358  frecfzennn  10361  hashunlem  10717  ennnfonelemk  12333  ennnfonelemg  12336  ennnfonelemkh  12345  ennnfonelemhf1o  12346  ennnfonelemex  12347  ennnfonelemrn  12352  ennnfonelemnn0  12355  ctinfomlemom  12360  0nninf  13884  nnsf  13885  peano4nninf  13886  nninfsellemdc  13890  nninfsellemsuc  13892  nninfself  13893  nninfsellemeqinf  13896
  Copyright terms: Public domain W3C validator