Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2 | Unicode version |
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
peano2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 | |
2 | simpl 108 | . . . . . 6 | |
3 | eleq1 2229 | . . . . . . . 8 | |
4 | suceq 4380 | . . . . . . . . 9 | |
5 | 4 | eleq1d 2235 | . . . . . . . 8 |
6 | 3, 5 | imbi12d 233 | . . . . . . 7 |
7 | 6 | adantl 275 | . . . . . 6 |
8 | df-clab 2152 | . . . . . . . . 9 | |
9 | simpr 109 | . . . . . . . . . . . 12 | |
10 | df-ral 2449 | . . . . . . . . . . . 12 | |
11 | 9, 10 | sylib 121 | . . . . . . . . . . 11 |
12 | 11 | sbimi 1752 | . . . . . . . . . 10 |
13 | sbim 1941 | . . . . . . . . . . . 12 | |
14 | clelsb2 2272 | . . . . . . . . . . . . 13 | |
15 | clelsb2 2272 | . . . . . . . . . . . . 13 | |
16 | 14, 15 | imbi12i 238 | . . . . . . . . . . . 12 |
17 | 13, 16 | bitri 183 | . . . . . . . . . . 11 |
18 | 17 | sbalv 1993 | . . . . . . . . . 10 |
19 | 12, 18 | sylib 121 | . . . . . . . . 9 |
20 | 8, 19 | sylbi 120 | . . . . . . . 8 |
21 | 20 | 19.21bi 1546 | . . . . . . 7 |
22 | 21 | adantl 275 | . . . . . 6 |
23 | nfv 1516 | . . . . . . 7 | |
24 | nfv 1516 | . . . . . . . . 9 | |
25 | nfra1 2497 | . . . . . . . . 9 | |
26 | 24, 25 | nfan 1553 | . . . . . . . 8 |
27 | 26 | nfsab 2157 | . . . . . . 7 |
28 | 23, 27 | nfan 1553 | . . . . . 6 |
29 | nfcvd 2309 | . . . . . 6 | |
30 | nfvd 1517 | . . . . . 6 | |
31 | 2, 7, 22, 28, 29, 30 | vtocldf 2777 | . . . . 5 |
32 | 31 | ralrimiva 2539 | . . . 4 |
33 | ralim 2525 | . . . . 5 | |
34 | elintg 3832 | . . . . . 6 | |
35 | sucexg 4475 | . . . . . . 7 | |
36 | elintg 3832 | . . . . . . 7 | |
37 | 35, 36 | syl 14 | . . . . . 6 |
38 | 34, 37 | imbi12d 233 | . . . . 5 |
39 | 33, 38 | syl5ibr 155 | . . . 4 |
40 | 32, 39 | mpd 13 | . . 3 |
41 | dfom3 4569 | . . . 4 | |
42 | 41 | eleq2i 2233 | . . 3 |
43 | 41 | eleq2i 2233 | . . 3 |
44 | 40, 42, 43 | 3imtr4g 204 | . 2 |
45 | 1, 44 | mpcom 36 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wsb 1750 wcel 2136 cab 2151 wral 2444 cvv 2726 c0 3409 cint 3824 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 |
This theorem is referenced by: peano5 4575 limom 4591 peano2b 4592 nnregexmid 4598 omsinds 4599 freccllem 6370 frecfcllem 6372 frecsuclem 6374 frecrdg 6376 nnacl 6448 nnacom 6452 nnmsucr 6456 nnsucsssuc 6460 nnaword 6479 1onn 6488 2onn 6489 3onn 6490 4onn 6491 nnaordex 6495 php5 6824 phplem4dom 6828 php5dom 6829 phplem4on 6833 dif1en 6845 findcard 6854 findcard2 6855 findcard2s 6856 infnfi 6861 unsnfi 6884 omp1eomlem 7059 ctmlemr 7073 infnninf 7088 infnninfOLD 7089 nnnninf 7090 nnnninfeq 7092 frec2uzrand 10340 frecuzrdgsuc 10349 frecuzrdgsuctlem 10358 frecfzennn 10361 hashunlem 10717 ennnfonelemk 12333 ennnfonelemg 12336 ennnfonelemkh 12345 ennnfonelemhf1o 12346 ennnfonelemex 12347 ennnfonelemrn 12352 ennnfonelemnn0 12355 ctinfomlemom 12360 0nninf 13884 nnsf 13885 peano4nninf 13886 nninfsellemdc 13890 nninfsellemsuc 13892 nninfself 13893 nninfsellemeqinf 13896 |
Copyright terms: Public domain | W3C validator |