| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > peano2 | Unicode version | ||
| Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| peano2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | 
. 2
 | |
| 2 | simpl 109 | 
. . . . . 6
 | |
| 3 | eleq1 2259 | 
. . . . . . . 8
 | |
| 4 | suceq 4437 | 
. . . . . . . . 9
 | |
| 5 | 4 | eleq1d 2265 | 
. . . . . . . 8
 | 
| 6 | 3, 5 | imbi12d 234 | 
. . . . . . 7
 | 
| 7 | 6 | adantl 277 | 
. . . . . 6
 | 
| 8 | df-clab 2183 | 
. . . . . . . . 9
 | |
| 9 | simpr 110 | 
. . . . . . . . . . . 12
 | |
| 10 | df-ral 2480 | 
. . . . . . . . . . . 12
 | |
| 11 | 9, 10 | sylib 122 | 
. . . . . . . . . . 11
 | 
| 12 | 11 | sbimi 1778 | 
. . . . . . . . . 10
 | 
| 13 | sbim 1972 | 
. . . . . . . . . . . 12
 | |
| 14 | clelsb2 2302 | 
. . . . . . . . . . . . 13
 | |
| 15 | clelsb2 2302 | 
. . . . . . . . . . . . 13
 | |
| 16 | 14, 15 | imbi12i 239 | 
. . . . . . . . . . . 12
 | 
| 17 | 13, 16 | bitri 184 | 
. . . . . . . . . . 11
 | 
| 18 | 17 | sbalv 2024 | 
. . . . . . . . . 10
 | 
| 19 | 12, 18 | sylib 122 | 
. . . . . . . . 9
 | 
| 20 | 8, 19 | sylbi 121 | 
. . . . . . . 8
 | 
| 21 | 20 | 19.21bi 1572 | 
. . . . . . 7
 | 
| 22 | 21 | adantl 277 | 
. . . . . 6
 | 
| 23 | nfv 1542 | 
. . . . . . 7
 | |
| 24 | nfv 1542 | 
. . . . . . . . 9
 | |
| 25 | nfra1 2528 | 
. . . . . . . . 9
 | |
| 26 | 24, 25 | nfan 1579 | 
. . . . . . . 8
 | 
| 27 | 26 | nfsab 2188 | 
. . . . . . 7
 | 
| 28 | 23, 27 | nfan 1579 | 
. . . . . 6
 | 
| 29 | nfcvd 2340 | 
. . . . . 6
 | |
| 30 | nfvd 1543 | 
. . . . . 6
 | |
| 31 | 2, 7, 22, 28, 29, 30 | vtocldf 2815 | 
. . . . 5
 | 
| 32 | 31 | ralrimiva 2570 | 
. . . 4
 | 
| 33 | ralim 2556 | 
. . . . 5
 | |
| 34 | elintg 3882 | 
. . . . . 6
 | |
| 35 | sucexg 4534 | 
. . . . . . 7
 | |
| 36 | elintg 3882 | 
. . . . . . 7
 | |
| 37 | 35, 36 | syl 14 | 
. . . . . 6
 | 
| 38 | 34, 37 | imbi12d 234 | 
. . . . 5
 | 
| 39 | 33, 38 | imbitrrid 156 | 
. . . 4
 | 
| 40 | 32, 39 | mpd 13 | 
. . 3
 | 
| 41 | dfom3 4628 | 
. . . 4
 | |
| 42 | 41 | eleq2i 2263 | 
. . 3
 | 
| 43 | 41 | eleq2i 2263 | 
. . 3
 | 
| 44 | 40, 42, 43 | 3imtr4g 205 | 
. 2
 | 
| 45 | 1, 44 | mpcom 36 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: peano5 4634 limom 4650 peano2b 4651 nnregexmid 4657 omsinds 4658 freccllem 6460 frecfcllem 6462 frecsuclem 6464 frecrdg 6466 nnacl 6538 nnacom 6542 nnmsucr 6546 nnsucsssuc 6550 nnaword 6569 1onn 6578 2onn 6579 3onn 6580 4onn 6581 nnaordex 6586 php5 6919 phplem4dom 6923 php5dom 6924 phplem4on 6928 dif1en 6940 findcard 6949 findcard2 6950 findcard2s 6951 infnfi 6956 unsnfi 6980 omp1eomlem 7160 ctmlemr 7174 nninfninc 7189 infnninf 7190 infnninfOLD 7191 nnnninf 7192 nnnninfeq 7194 nninfwlpoimlemg 7241 nninfwlpoimlemginf 7242 frec2uzrand 10497 frecuzrdgsuc 10506 frecuzrdgsuctlem 10515 frecfzennn 10518 hashunlem 10896 ennnfonelemk 12617 ennnfonelemg 12620 ennnfonelemkh 12629 ennnfonelemhf1o 12630 ennnfonelemex 12631 ennnfonelemrn 12636 ennnfonelemnn0 12639 ctinfomlemom 12644 0nninf 15648 nnsf 15649 peano4nninf 15650 nninfsellemdc 15654 nninfsellemsuc 15656 nninfself 15657 nninfsellemeqinf 15660 | 
| Copyright terms: Public domain | W3C validator |