Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2 | Unicode version |
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
peano2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 | |
2 | simpl 108 | . . . . . 6 | |
3 | eleq1 2233 | . . . . . . . 8 | |
4 | suceq 4387 | . . . . . . . . 9 | |
5 | 4 | eleq1d 2239 | . . . . . . . 8 |
6 | 3, 5 | imbi12d 233 | . . . . . . 7 |
7 | 6 | adantl 275 | . . . . . 6 |
8 | df-clab 2157 | . . . . . . . . 9 | |
9 | simpr 109 | . . . . . . . . . . . 12 | |
10 | df-ral 2453 | . . . . . . . . . . . 12 | |
11 | 9, 10 | sylib 121 | . . . . . . . . . . 11 |
12 | 11 | sbimi 1757 | . . . . . . . . . 10 |
13 | sbim 1946 | . . . . . . . . . . . 12 | |
14 | clelsb2 2276 | . . . . . . . . . . . . 13 | |
15 | clelsb2 2276 | . . . . . . . . . . . . 13 | |
16 | 14, 15 | imbi12i 238 | . . . . . . . . . . . 12 |
17 | 13, 16 | bitri 183 | . . . . . . . . . . 11 |
18 | 17 | sbalv 1998 | . . . . . . . . . 10 |
19 | 12, 18 | sylib 121 | . . . . . . . . 9 |
20 | 8, 19 | sylbi 120 | . . . . . . . 8 |
21 | 20 | 19.21bi 1551 | . . . . . . 7 |
22 | 21 | adantl 275 | . . . . . 6 |
23 | nfv 1521 | . . . . . . 7 | |
24 | nfv 1521 | . . . . . . . . 9 | |
25 | nfra1 2501 | . . . . . . . . 9 | |
26 | 24, 25 | nfan 1558 | . . . . . . . 8 |
27 | 26 | nfsab 2162 | . . . . . . 7 |
28 | 23, 27 | nfan 1558 | . . . . . 6 |
29 | nfcvd 2313 | . . . . . 6 | |
30 | nfvd 1522 | . . . . . 6 | |
31 | 2, 7, 22, 28, 29, 30 | vtocldf 2781 | . . . . 5 |
32 | 31 | ralrimiva 2543 | . . . 4 |
33 | ralim 2529 | . . . . 5 | |
34 | elintg 3839 | . . . . . 6 | |
35 | sucexg 4482 | . . . . . . 7 | |
36 | elintg 3839 | . . . . . . 7 | |
37 | 35, 36 | syl 14 | . . . . . 6 |
38 | 34, 37 | imbi12d 233 | . . . . 5 |
39 | 33, 38 | syl5ibr 155 | . . . 4 |
40 | 32, 39 | mpd 13 | . . 3 |
41 | dfom3 4576 | . . . 4 | |
42 | 41 | eleq2i 2237 | . . 3 |
43 | 41 | eleq2i 2237 | . . 3 |
44 | 40, 42, 43 | 3imtr4g 204 | . 2 |
45 | 1, 44 | mpcom 36 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wsb 1755 wcel 2141 cab 2156 wral 2448 cvv 2730 c0 3414 cint 3831 csuc 4350 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 |
This theorem is referenced by: peano5 4582 limom 4598 peano2b 4599 nnregexmid 4605 omsinds 4606 freccllem 6381 frecfcllem 6383 frecsuclem 6385 frecrdg 6387 nnacl 6459 nnacom 6463 nnmsucr 6467 nnsucsssuc 6471 nnaword 6490 1onn 6499 2onn 6500 3onn 6501 4onn 6502 nnaordex 6507 php5 6836 phplem4dom 6840 php5dom 6841 phplem4on 6845 dif1en 6857 findcard 6866 findcard2 6867 findcard2s 6868 infnfi 6873 unsnfi 6896 omp1eomlem 7071 ctmlemr 7085 infnninf 7100 infnninfOLD 7101 nnnninf 7102 nnnninfeq 7104 nninfwlpoimlemg 7151 nninfwlpoimlemginf 7152 frec2uzrand 10361 frecuzrdgsuc 10370 frecuzrdgsuctlem 10379 frecfzennn 10382 hashunlem 10739 ennnfonelemk 12355 ennnfonelemg 12358 ennnfonelemkh 12367 ennnfonelemhf1o 12368 ennnfonelemex 12369 ennnfonelemrn 12374 ennnfonelemnn0 12377 ctinfomlemom 12382 0nninf 14037 nnsf 14038 peano4nninf 14039 nninfsellemdc 14043 nninfsellemsuc 14045 nninfself 14046 nninfsellemeqinf 14049 |
Copyright terms: Public domain | W3C validator |