Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2 | Unicode version |
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
peano2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2723 | . 2 | |
2 | simpl 108 | . . . . . 6 | |
3 | eleq1 2220 | . . . . . . . 8 | |
4 | suceq 4361 | . . . . . . . . 9 | |
5 | 4 | eleq1d 2226 | . . . . . . . 8 |
6 | 3, 5 | imbi12d 233 | . . . . . . 7 |
7 | 6 | adantl 275 | . . . . . 6 |
8 | df-clab 2144 | . . . . . . . . 9 | |
9 | simpr 109 | . . . . . . . . . . . 12 | |
10 | df-ral 2440 | . . . . . . . . . . . 12 | |
11 | 9, 10 | sylib 121 | . . . . . . . . . . 11 |
12 | 11 | sbimi 1744 | . . . . . . . . . 10 |
13 | sbim 1933 | . . . . . . . . . . . 12 | |
14 | clelsb4 2263 | . . . . . . . . . . . . 13 | |
15 | clelsb4 2263 | . . . . . . . . . . . . 13 | |
16 | 14, 15 | imbi12i 238 | . . . . . . . . . . . 12 |
17 | 13, 16 | bitri 183 | . . . . . . . . . . 11 |
18 | 17 | sbalv 1985 | . . . . . . . . . 10 |
19 | 12, 18 | sylib 121 | . . . . . . . . 9 |
20 | 8, 19 | sylbi 120 | . . . . . . . 8 |
21 | 20 | 19.21bi 1538 | . . . . . . 7 |
22 | 21 | adantl 275 | . . . . . 6 |
23 | nfv 1508 | . . . . . . 7 | |
24 | nfv 1508 | . . . . . . . . 9 | |
25 | nfra1 2488 | . . . . . . . . 9 | |
26 | 24, 25 | nfan 1545 | . . . . . . . 8 |
27 | 26 | nfsab 2149 | . . . . . . 7 |
28 | 23, 27 | nfan 1545 | . . . . . 6 |
29 | nfcvd 2300 | . . . . . 6 | |
30 | nfvd 1509 | . . . . . 6 | |
31 | 2, 7, 22, 28, 29, 30 | vtocldf 2763 | . . . . 5 |
32 | 31 | ralrimiva 2530 | . . . 4 |
33 | ralim 2516 | . . . . 5 | |
34 | elintg 3815 | . . . . . 6 | |
35 | sucexg 4455 | . . . . . . 7 | |
36 | elintg 3815 | . . . . . . 7 | |
37 | 35, 36 | syl 14 | . . . . . 6 |
38 | 34, 37 | imbi12d 233 | . . . . 5 |
39 | 33, 38 | syl5ibr 155 | . . . 4 |
40 | 32, 39 | mpd 13 | . . 3 |
41 | dfom3 4549 | . . . 4 | |
42 | 41 | eleq2i 2224 | . . 3 |
43 | 41 | eleq2i 2224 | . . 3 |
44 | 40, 42, 43 | 3imtr4g 204 | . 2 |
45 | 1, 44 | mpcom 36 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1333 wceq 1335 wsb 1742 wcel 2128 cab 2143 wral 2435 cvv 2712 c0 3394 cint 3807 csuc 4324 com 4547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-suc 4330 df-iom 4548 |
This theorem is referenced by: peano5 4555 limom 4571 peano2b 4572 nnregexmid 4578 omsinds 4579 freccllem 6343 frecfcllem 6345 frecsuclem 6347 frecrdg 6349 nnacl 6420 nnacom 6424 nnmsucr 6428 nnsucsssuc 6432 nnaword 6451 1onn 6460 2onn 6461 3onn 6462 4onn 6463 nnaordex 6467 php5 6796 phplem4dom 6800 php5dom 6801 phplem4on 6805 dif1en 6817 findcard 6826 findcard2 6827 findcard2s 6828 infnfi 6833 unsnfi 6856 omp1eomlem 7028 ctmlemr 7042 infnninf 7056 infnninfOLD 7057 nnnninf 7058 frec2uzrand 10286 frecuzrdgsuc 10295 frecuzrdgsuctlem 10304 frecfzennn 10307 hashunlem 10660 ennnfonelemk 12101 ennnfonelemg 12104 ennnfonelemkh 12113 ennnfonelemhf1o 12114 ennnfonelemex 12115 ennnfonelemrn 12120 ennnfonelemnn0 12123 ctinfomlemom 12128 0nninf 13536 nnsf 13538 peano4nninf 13539 nninfalllemn 13541 nninfsellemdc 13544 nninfsellemsuc 13546 nninfself 13547 nninfsellemeqinf 13550 |
Copyright terms: Public domain | W3C validator |