| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2 | Unicode version | ||
| Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. 2
| |
| 2 | simpl 109 |
. . . . . 6
| |
| 3 | eleq1 2268 |
. . . . . . . 8
| |
| 4 | suceq 4450 |
. . . . . . . . 9
| |
| 5 | 4 | eleq1d 2274 |
. . . . . . . 8
|
| 6 | 3, 5 | imbi12d 234 |
. . . . . . 7
|
| 7 | 6 | adantl 277 |
. . . . . 6
|
| 8 | df-clab 2192 |
. . . . . . . . 9
| |
| 9 | simpr 110 |
. . . . . . . . . . . 12
| |
| 10 | df-ral 2489 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | sylib 122 |
. . . . . . . . . . 11
|
| 12 | 11 | sbimi 1787 |
. . . . . . . . . 10
|
| 13 | sbim 1981 |
. . . . . . . . . . . 12
| |
| 14 | clelsb2 2311 |
. . . . . . . . . . . . 13
| |
| 15 | clelsb2 2311 |
. . . . . . . . . . . . 13
| |
| 16 | 14, 15 | imbi12i 239 |
. . . . . . . . . . . 12
|
| 17 | 13, 16 | bitri 184 |
. . . . . . . . . . 11
|
| 18 | 17 | sbalv 2033 |
. . . . . . . . . 10
|
| 19 | 12, 18 | sylib 122 |
. . . . . . . . 9
|
| 20 | 8, 19 | sylbi 121 |
. . . . . . . 8
|
| 21 | 20 | 19.21bi 1581 |
. . . . . . 7
|
| 22 | 21 | adantl 277 |
. . . . . 6
|
| 23 | nfv 1551 |
. . . . . . 7
| |
| 24 | nfv 1551 |
. . . . . . . . 9
| |
| 25 | nfra1 2537 |
. . . . . . . . 9
| |
| 26 | 24, 25 | nfan 1588 |
. . . . . . . 8
|
| 27 | 26 | nfsab 2197 |
. . . . . . 7
|
| 28 | 23, 27 | nfan 1588 |
. . . . . 6
|
| 29 | nfcvd 2349 |
. . . . . 6
| |
| 30 | nfvd 1552 |
. . . . . 6
| |
| 31 | 2, 7, 22, 28, 29, 30 | vtocldf 2824 |
. . . . 5
|
| 32 | 31 | ralrimiva 2579 |
. . . 4
|
| 33 | ralim 2565 |
. . . . 5
| |
| 34 | elintg 3893 |
. . . . . 6
| |
| 35 | sucexg 4547 |
. . . . . . 7
| |
| 36 | elintg 3893 |
. . . . . . 7
| |
| 37 | 35, 36 | syl 14 |
. . . . . 6
|
| 38 | 34, 37 | imbi12d 234 |
. . . . 5
|
| 39 | 33, 38 | imbitrrid 156 |
. . . 4
|
| 40 | 32, 39 | mpd 13 |
. . 3
|
| 41 | dfom3 4641 |
. . . 4
| |
| 42 | 41 | eleq2i 2272 |
. . 3
|
| 43 | 41 | eleq2i 2272 |
. . 3
|
| 44 | 40, 42, 43 | 3imtr4g 205 |
. 2
|
| 45 | 1, 44 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4419 df-iom 4640 |
| This theorem is referenced by: peano5 4647 limom 4663 peano2b 4664 nnregexmid 4670 omsinds 4671 freccllem 6490 frecfcllem 6492 frecsuclem 6494 frecrdg 6496 nnacl 6568 nnacom 6572 nnmsucr 6576 nnsucsssuc 6580 nnaword 6599 1onn 6608 2onn 6609 3onn 6610 4onn 6611 nnaordex 6616 php5 6957 phplem4dom 6961 php5dom 6962 phplem4on 6966 dif1en 6978 findcard 6987 findcard2 6988 findcard2s 6989 infnfi 6994 unsnfi 7018 omp1eomlem 7198 ctmlemr 7212 nninfninc 7227 infnninf 7228 infnninfOLD 7229 nnnninf 7230 nnnninfeq 7232 nninfwlpoimlemg 7279 nninfwlpoimlemginf 7280 frec2uzrand 10552 frecuzrdgsuc 10561 frecuzrdgsuctlem 10570 frecfzennn 10573 hashunlem 10951 ennnfonelemk 12804 ennnfonelemg 12807 ennnfonelemkh 12816 ennnfonelemhf1o 12817 ennnfonelemex 12818 ennnfonelemrn 12823 ennnfonelemnn0 12826 ctinfomlemom 12831 0nninf 15978 nnsf 15979 peano4nninf 15980 nninfsellemdc 15984 nninfsellemsuc 15986 nninfself 15987 nninfsellemeqinf 15990 nnnninfex 15996 |
| Copyright terms: Public domain | W3C validator |