| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2 | Unicode version | ||
| Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. 2
| |
| 2 | simpl 109 |
. . . . . 6
| |
| 3 | eleq1 2270 |
. . . . . . . 8
| |
| 4 | suceq 4467 |
. . . . . . . . 9
| |
| 5 | 4 | eleq1d 2276 |
. . . . . . . 8
|
| 6 | 3, 5 | imbi12d 234 |
. . . . . . 7
|
| 7 | 6 | adantl 277 |
. . . . . 6
|
| 8 | df-clab 2194 |
. . . . . . . . 9
| |
| 9 | simpr 110 |
. . . . . . . . . . . 12
| |
| 10 | df-ral 2491 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | sylib 122 |
. . . . . . . . . . 11
|
| 12 | 11 | sbimi 1788 |
. . . . . . . . . 10
|
| 13 | sbim 1982 |
. . . . . . . . . . . 12
| |
| 14 | clelsb2 2313 |
. . . . . . . . . . . . 13
| |
| 15 | clelsb2 2313 |
. . . . . . . . . . . . 13
| |
| 16 | 14, 15 | imbi12i 239 |
. . . . . . . . . . . 12
|
| 17 | 13, 16 | bitri 184 |
. . . . . . . . . . 11
|
| 18 | 17 | sbalv 2034 |
. . . . . . . . . 10
|
| 19 | 12, 18 | sylib 122 |
. . . . . . . . 9
|
| 20 | 8, 19 | sylbi 121 |
. . . . . . . 8
|
| 21 | 20 | 19.21bi 1582 |
. . . . . . 7
|
| 22 | 21 | adantl 277 |
. . . . . 6
|
| 23 | nfv 1552 |
. . . . . . 7
| |
| 24 | nfv 1552 |
. . . . . . . . 9
| |
| 25 | nfra1 2539 |
. . . . . . . . 9
| |
| 26 | 24, 25 | nfan 1589 |
. . . . . . . 8
|
| 27 | 26 | nfsab 2199 |
. . . . . . 7
|
| 28 | 23, 27 | nfan 1589 |
. . . . . 6
|
| 29 | nfcvd 2351 |
. . . . . 6
| |
| 30 | nfvd 1553 |
. . . . . 6
| |
| 31 | 2, 7, 22, 28, 29, 30 | vtocldf 2829 |
. . . . 5
|
| 32 | 31 | ralrimiva 2581 |
. . . 4
|
| 33 | ralim 2567 |
. . . . 5
| |
| 34 | elintg 3907 |
. . . . . 6
| |
| 35 | sucexg 4564 |
. . . . . . 7
| |
| 36 | elintg 3907 |
. . . . . . 7
| |
| 37 | 35, 36 | syl 14 |
. . . . . 6
|
| 38 | 34, 37 | imbi12d 234 |
. . . . 5
|
| 39 | 33, 38 | imbitrrid 156 |
. . . 4
|
| 40 | 32, 39 | mpd 13 |
. . 3
|
| 41 | dfom3 4658 |
. . . 4
| |
| 42 | 41 | eleq2i 2274 |
. . 3
|
| 43 | 41 | eleq2i 2274 |
. . 3
|
| 44 | 40, 42, 43 | 3imtr4g 205 |
. 2
|
| 45 | 1, 44 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: peano5 4664 limom 4680 peano2b 4681 nnregexmid 4687 omsinds 4688 freccllem 6511 frecfcllem 6513 frecsuclem 6515 frecrdg 6517 nnacl 6589 nnacom 6593 nnmsucr 6597 nnsucsssuc 6601 nnaword 6620 1onn 6629 2onn 6630 3onn 6631 4onn 6632 nnaordex 6637 php5 6980 phplem4dom 6984 php5dom 6985 phplem4on 6990 dif1en 7002 findcard 7011 findcard2 7012 findcard2s 7013 infnfi 7018 unsnfi 7042 omp1eomlem 7222 ctmlemr 7236 nninfninc 7251 infnninf 7252 infnninfOLD 7253 nnnninf 7254 nnnninfeq 7256 nninfwlpoimlemg 7303 nninfwlpoimlemginf 7304 frec2uzrand 10587 frecuzrdgsuc 10596 frecuzrdgsuctlem 10605 frecfzennn 10608 hashunlem 10986 ennnfonelemk 12886 ennnfonelemg 12889 ennnfonelemkh 12898 ennnfonelemhf1o 12899 ennnfonelemex 12900 ennnfonelemrn 12905 ennnfonelemnn0 12908 ctinfomlemom 12913 0nninf 16143 nnsf 16144 peano4nninf 16145 nninfsellemdc 16149 nninfsellemsuc 16151 nninfself 16152 nninfsellemeqinf 16155 nnnninfex 16161 |
| Copyright terms: Public domain | W3C validator |