ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2 Unicode version

Theorem peano2 4579
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano2  |-  ( A  e.  om  ->  suc  A  e.  om )

Proof of Theorem peano2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2741 . 2  |-  ( A  e.  om  ->  A  e.  _V )
2 simpl 108 . . . . . 6  |-  ( ( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  ->  A  e.  _V )
3 eleq1 2233 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  z  <->  A  e.  z ) )
4 suceq 4387 . . . . . . . . 9  |-  ( x  =  A  ->  suc  x  =  suc  A )
54eleq1d 2239 . . . . . . . 8  |-  ( x  =  A  ->  ( suc  x  e.  z  <->  suc  A  e.  z ) )
63, 5imbi12d 233 . . . . . . 7  |-  ( x  =  A  ->  (
( x  e.  z  ->  suc  x  e.  z )  <->  ( A  e.  z  ->  suc  A  e.  z ) ) )
76adantl 275 . . . . . 6  |-  ( ( ( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  /\  x  =  A )  ->  ( (
x  e.  z  ->  suc  x  e.  z )  <-> 
( A  e.  z  ->  suc  A  e.  z ) ) )
8 df-clab 2157 . . . . . . . . 9  |-  ( z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  <->  [ z  /  y ] (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) )
9 simpr 109 . . . . . . . . . . . 12  |-  ( (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )  ->  A. x  e.  y  suc  x  e.  y )
10 df-ral 2453 . . . . . . . . . . . 12  |-  ( A. x  e.  y  suc  x  e.  y  <->  A. x
( x  e.  y  ->  suc  x  e.  y ) )
119, 10sylib 121 . . . . . . . . . . 11  |-  ( (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )  ->  A. x ( x  e.  y  ->  suc  x  e.  y )
)
1211sbimi 1757 . . . . . . . . . 10  |-  ( [ z  /  y ] ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )  ->  [ z  /  y ] A. x ( x  e.  y  ->  suc  x  e.  y ) )
13 sbim 1946 . . . . . . . . . . . 12  |-  ( [ z  /  y ] ( x  e.  y  ->  suc  x  e.  y )  <->  ( [
z  /  y ] x  e.  y  ->  [ z  /  y ] suc  x  e.  y ) )
14 clelsb2 2276 . . . . . . . . . . . . 13  |-  ( [ z  /  y ] x  e.  y  <->  x  e.  z )
15 clelsb2 2276 . . . . . . . . . . . . 13  |-  ( [ z  /  y ] suc  x  e.  y  <->  suc  x  e.  z )
1614, 15imbi12i 238 . . . . . . . . . . . 12  |-  ( ( [ z  /  y ] x  e.  y  ->  [ z  /  y ] suc  x  e.  y )  <->  ( x  e.  z  ->  suc  x  e.  z ) )
1713, 16bitri 183 . . . . . . . . . . 11  |-  ( [ z  /  y ] ( x  e.  y  ->  suc  x  e.  y )  <->  ( x  e.  z  ->  suc  x  e.  z ) )
1817sbalv 1998 . . . . . . . . . 10  |-  ( [ z  /  y ] A. x ( x  e.  y  ->  suc  x  e.  y )  <->  A. x ( x  e.  z  ->  suc  x  e.  z ) )
1912, 18sylib 121 . . . . . . . . 9  |-  ( [ z  /  y ] ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )  ->  A. x
( x  e.  z  ->  suc  x  e.  z ) )
208, 19sylbi 120 . . . . . . . 8  |-  ( z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  A. x
( x  e.  z  ->  suc  x  e.  z ) )
212019.21bi 1551 . . . . . . 7  |-  ( z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  (
x  e.  z  ->  suc  x  e.  z ) )
2221adantl 275 . . . . . 6  |-  ( ( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  ->  ( x  e.  z  ->  suc  x  e.  z ) )
23 nfv 1521 . . . . . . 7  |-  F/ x  A  e.  _V
24 nfv 1521 . . . . . . . . 9  |-  F/ x (/) 
e.  y
25 nfra1 2501 . . . . . . . . 9  |-  F/ x A. x  e.  y  suc  x  e.  y
2624, 25nfan 1558 . . . . . . . 8  |-  F/ x
( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )
2726nfsab 2162 . . . . . . 7  |-  F/ x  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }
2823, 27nfan 1558 . . . . . 6  |-  F/ x
( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )
29 nfcvd 2313 . . . . . 6  |-  ( ( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  ->  F/_ x A )
30 nfvd 1522 . . . . . 6  |-  ( ( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  ->  F/ x ( A  e.  z  ->  suc  A  e.  z ) )
312, 7, 22, 28, 29, 30vtocldf 2781 . . . . 5  |-  ( ( A  e.  _V  /\  z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  ->  ( A  e.  z  ->  suc  A  e.  z ) )
3231ralrimiva 2543 . . . 4  |-  ( A  e.  _V  ->  A. z  e.  { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ( A  e.  z  ->  suc  A  e.  z ) )
33 ralim 2529 . . . . 5  |-  ( A. z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ( A  e.  z  ->  suc 
A  e.  z )  ->  ( A. z  e.  { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } A  e.  z  ->  A. z  e.  {
y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } suc  A  e.  z ) )
34 elintg 3839 . . . . . 6  |-  ( A  e.  _V  ->  ( A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  <->  A. z  e.  { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } A  e.  z ) )
35 sucexg 4482 . . . . . . 7  |-  ( A  e.  _V  ->  suc  A  e.  _V )
36 elintg 3839 . . . . . . 7  |-  ( suc 
A  e.  _V  ->  ( suc  A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  <->  A. z  e.  { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } suc  A  e.  z ) )
3735, 36syl 14 . . . . . 6  |-  ( A  e.  _V  ->  ( suc  A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  <->  A. z  e.  { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } suc  A  e.  z ) )
3834, 37imbi12d 233 . . . . 5  |-  ( A  e.  _V  ->  (
( A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  suc 
A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )  <-> 
( A. z  e. 
{ y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } A  e.  z  ->  A. z  e.  {
y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } suc  A  e.  z ) ) )
3933, 38syl5ibr 155 . . . 4  |-  ( A  e.  _V  ->  ( A. z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ( A  e.  z  ->  suc 
A  e.  z )  ->  ( A  e. 
|^| { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  suc  A  e. 
|^| { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } ) ) )
4032, 39mpd 13 . . 3  |-  ( A  e.  _V  ->  ( A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  suc 
A  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } ) )
41 dfom3 4576 . . . 4  |-  om  =  |^| { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }
4241eleq2i 2237 . . 3  |-  ( A  e.  om  <->  A  e.  |^|
{ y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )
4341eleq2i 2237 . . 3  |-  ( suc 
A  e.  om  <->  suc  A  e. 
|^| { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )
4440, 42, 433imtr4g 204 . 2  |-  ( A  e.  _V  ->  ( A  e.  om  ->  suc 
A  e.  om )
)
451, 44mpcom 36 1  |-  ( A  e.  om  ->  suc  A  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   [wsb 1755    e. wcel 2141   {cab 2156   A.wral 2448   _Vcvv 2730   (/)c0 3414   |^|cint 3831   suc csuc 4350   omcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575
This theorem is referenced by:  peano5  4582  limom  4598  peano2b  4599  nnregexmid  4605  omsinds  4606  freccllem  6381  frecfcllem  6383  frecsuclem  6385  frecrdg  6387  nnacl  6459  nnacom  6463  nnmsucr  6467  nnsucsssuc  6471  nnaword  6490  1onn  6499  2onn  6500  3onn  6501  4onn  6502  nnaordex  6507  php5  6836  phplem4dom  6840  php5dom  6841  phplem4on  6845  dif1en  6857  findcard  6866  findcard2  6867  findcard2s  6868  infnfi  6873  unsnfi  6896  omp1eomlem  7071  ctmlemr  7085  infnninf  7100  infnninfOLD  7101  nnnninf  7102  nnnninfeq  7104  nninfwlpoimlemg  7151  nninfwlpoimlemginf  7152  frec2uzrand  10361  frecuzrdgsuc  10370  frecuzrdgsuctlem  10379  frecfzennn  10382  hashunlem  10739  ennnfonelemk  12355  ennnfonelemg  12358  ennnfonelemkh  12367  ennnfonelemhf1o  12368  ennnfonelemex  12369  ennnfonelemrn  12374  ennnfonelemnn0  12377  ctinfomlemom  12382  0nninf  14037  nnsf  14038  peano4nninf  14039  nninfsellemdc  14043  nninfsellemsuc  14045  nninfself  14046  nninfsellemeqinf  14049
  Copyright terms: Public domain W3C validator