| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2 | Unicode version | ||
| Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| peano2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | simpl 109 |
. . . . . 6
| |
| 3 | eleq1 2259 |
. . . . . . . 8
| |
| 4 | suceq 4438 |
. . . . . . . . 9
| |
| 5 | 4 | eleq1d 2265 |
. . . . . . . 8
|
| 6 | 3, 5 | imbi12d 234 |
. . . . . . 7
|
| 7 | 6 | adantl 277 |
. . . . . 6
|
| 8 | df-clab 2183 |
. . . . . . . . 9
| |
| 9 | simpr 110 |
. . . . . . . . . . . 12
| |
| 10 | df-ral 2480 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | sylib 122 |
. . . . . . . . . . 11
|
| 12 | 11 | sbimi 1778 |
. . . . . . . . . 10
|
| 13 | sbim 1972 |
. . . . . . . . . . . 12
| |
| 14 | clelsb2 2302 |
. . . . . . . . . . . . 13
| |
| 15 | clelsb2 2302 |
. . . . . . . . . . . . 13
| |
| 16 | 14, 15 | imbi12i 239 |
. . . . . . . . . . . 12
|
| 17 | 13, 16 | bitri 184 |
. . . . . . . . . . 11
|
| 18 | 17 | sbalv 2024 |
. . . . . . . . . 10
|
| 19 | 12, 18 | sylib 122 |
. . . . . . . . 9
|
| 20 | 8, 19 | sylbi 121 |
. . . . . . . 8
|
| 21 | 20 | 19.21bi 1572 |
. . . . . . 7
|
| 22 | 21 | adantl 277 |
. . . . . 6
|
| 23 | nfv 1542 |
. . . . . . 7
| |
| 24 | nfv 1542 |
. . . . . . . . 9
| |
| 25 | nfra1 2528 |
. . . . . . . . 9
| |
| 26 | 24, 25 | nfan 1579 |
. . . . . . . 8
|
| 27 | 26 | nfsab 2188 |
. . . . . . 7
|
| 28 | 23, 27 | nfan 1579 |
. . . . . 6
|
| 29 | nfcvd 2340 |
. . . . . 6
| |
| 30 | nfvd 1543 |
. . . . . 6
| |
| 31 | 2, 7, 22, 28, 29, 30 | vtocldf 2815 |
. . . . 5
|
| 32 | 31 | ralrimiva 2570 |
. . . 4
|
| 33 | ralim 2556 |
. . . . 5
| |
| 34 | elintg 3883 |
. . . . . 6
| |
| 35 | sucexg 4535 |
. . . . . . 7
| |
| 36 | elintg 3883 |
. . . . . . 7
| |
| 37 | 35, 36 | syl 14 |
. . . . . 6
|
| 38 | 34, 37 | imbi12d 234 |
. . . . 5
|
| 39 | 33, 38 | imbitrrid 156 |
. . . 4
|
| 40 | 32, 39 | mpd 13 |
. . 3
|
| 41 | dfom3 4629 |
. . . 4
| |
| 42 | 41 | eleq2i 2263 |
. . 3
|
| 43 | 41 | eleq2i 2263 |
. . 3
|
| 44 | 40, 42, 43 | 3imtr4g 205 |
. 2
|
| 45 | 1, 44 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: peano5 4635 limom 4651 peano2b 4652 nnregexmid 4658 omsinds 4659 freccllem 6469 frecfcllem 6471 frecsuclem 6473 frecrdg 6475 nnacl 6547 nnacom 6551 nnmsucr 6555 nnsucsssuc 6559 nnaword 6578 1onn 6587 2onn 6588 3onn 6589 4onn 6590 nnaordex 6595 php5 6928 phplem4dom 6932 php5dom 6933 phplem4on 6937 dif1en 6949 findcard 6958 findcard2 6959 findcard2s 6960 infnfi 6965 unsnfi 6989 omp1eomlem 7169 ctmlemr 7183 nninfninc 7198 infnninf 7199 infnninfOLD 7200 nnnninf 7201 nnnninfeq 7203 nninfwlpoimlemg 7250 nninfwlpoimlemginf 7251 frec2uzrand 10514 frecuzrdgsuc 10523 frecuzrdgsuctlem 10532 frecfzennn 10535 hashunlem 10913 ennnfonelemk 12642 ennnfonelemg 12645 ennnfonelemkh 12654 ennnfonelemhf1o 12655 ennnfonelemex 12656 ennnfonelemrn 12661 ennnfonelemnn0 12664 ctinfomlemom 12669 0nninf 15735 nnsf 15736 peano4nninf 15737 nninfsellemdc 15741 nninfsellemsuc 15743 nninfself 15744 nninfsellemeqinf 15747 |
| Copyright terms: Public domain | W3C validator |