ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbex Unicode version

Theorem sbex 1935
Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
Assertion
Ref Expression
sbex  |-  ( [ z  /  y ] E. x ph  <->  E. x [ z  /  y ] ph )
Distinct variable groups:    x, y    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbex
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sbexyz 1934 . . . 4  |-  ( [ w  /  y ] E. x ph  <->  E. x [ w  /  y ] ph )
21sbbii 1702 . . 3  |-  ( [ z  /  w ] [ w  /  y ] E. x ph  <->  [ z  /  w ] E. x [ w  /  y ] ph )
3 sbexyz 1934 . . 3  |-  ( [ z  /  w ] E. x [ w  / 
y ] ph  <->  E. x [ z  /  w ] [ w  /  y ] ph )
42, 3bitri 183 . 2  |-  ( [ z  /  w ] [ w  /  y ] E. x ph  <->  E. x [ z  /  w ] [ w  /  y ] ph )
5 ax-17 1471 . . 3  |-  ( E. x ph  ->  A. w E. x ph )
65sbco2v 1876 . 2  |-  ( [ z  /  w ] [ w  /  y ] E. x ph  <->  [ z  /  y ] E. x ph )
7 ax-17 1471 . . . 4  |-  ( ph  ->  A. w ph )
87sbco2v 1876 . . 3  |-  ( [ z  /  w ] [ w  /  y ] ph  <->  [ z  /  y ] ph )
98exbii 1548 . 2  |-  ( E. x [ z  /  w ] [ w  / 
y ] ph  <->  E. x [ z  /  y ] ph )
104, 6, 93bitr3i 209 1  |-  ( [ z  /  y ] E. x ph  <->  E. x [ z  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1433   [wsb 1699
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480
This theorem depends on definitions:  df-bi 116  df-nf 1402  df-sb 1700
This theorem is referenced by:  sbabel  2261  sbcex2  2906  sbcexg  2907
  Copyright terms: Public domain W3C validator