ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbalv GIF version

Theorem sbalv 2056
Description: Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
sbalv.1 ([𝑦 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sbalv ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem sbalv
StepHypRef Expression
1 sbal 2051 . 2 ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧[𝑦 / 𝑥]𝜑)
2 sbalv.1 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
32albii 1516 . 2 (∀𝑧[𝑦 / 𝑥]𝜑 ↔ ∀𝑧𝜓)
41, 3bitri 184 1 ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1393  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by:  sbmo  2137  sbabel  2399  peano2  4686
  Copyright terms: Public domain W3C validator