| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbalv | GIF version | ||
| Description: Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbalv.1 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbalv | ⊢ ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbal 2051 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧[𝑦 / 𝑥]𝜑) | |
| 2 | sbalv.1 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | |
| 3 | 2 | albii 1516 | . 2 ⊢ (∀𝑧[𝑦 / 𝑥]𝜑 ↔ ∀𝑧𝜓) |
| 4 | 1, 3 | bitri 184 | 1 ⊢ ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1393 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: sbmo 2137 sbabel 2399 peano2 4686 |
| Copyright terms: Public domain | W3C validator |