Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcbi2 | Unicode version |
Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
Ref | Expression |
---|---|
sbcbi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2284 | . . 3 | |
2 | eleq2 2234 | . . 3 | |
3 | 1, 2 | sylbi 120 | . 2 |
4 | df-sbc 2956 | . 2 | |
5 | df-sbc 2956 | . 2 | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 wcel 2141 cab 2156 wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-sbc 2956 |
This theorem is referenced by: csbeq2 3073 |
Copyright terms: Public domain | W3C validator |