ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbi2 Unicode version

Theorem sbcbi2 3001
Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
Assertion
Ref Expression
sbcbi2  |-  ( A. x ( ph  <->  ps )  ->  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps ) )

Proof of Theorem sbcbi2
StepHypRef Expression
1 abbi 2280 . . 3  |-  ( A. x ( ph  <->  ps )  <->  { x  |  ph }  =  { x  |  ps } )
2 eleq2 2230 . . 3  |-  ( { x  |  ph }  =  { x  |  ps }  ->  ( A  e. 
{ x  |  ph } 
<->  A  e.  { x  |  ps } ) )
31, 2sylbi 120 . 2  |-  ( A. x ( ph  <->  ps )  ->  ( A  e.  {
x  |  ph }  <->  A  e.  { x  |  ps } ) )
4 df-sbc 2952 . 2  |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph }
)
5 df-sbc 2952 . 2  |-  ( [. A  /  x ]. ps  <->  A  e.  { x  |  ps } )
63, 4, 53bitr4g 222 1  |-  ( A. x ( ph  <->  ps )  ->  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136   {cab 2151   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-sbc 2952
This theorem is referenced by:  csbeq2  3069
  Copyright terms: Public domain W3C validator