ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbi2 Unicode version

Theorem sbcbi2 3005
Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
Assertion
Ref Expression
sbcbi2  |-  ( A. x ( ph  <->  ps )  ->  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps ) )

Proof of Theorem sbcbi2
StepHypRef Expression
1 abbi 2284 . . 3  |-  ( A. x ( ph  <->  ps )  <->  { x  |  ph }  =  { x  |  ps } )
2 eleq2 2234 . . 3  |-  ( { x  |  ph }  =  { x  |  ps }  ->  ( A  e. 
{ x  |  ph } 
<->  A  e.  { x  |  ps } ) )
31, 2sylbi 120 . 2  |-  ( A. x ( ph  <->  ps )  ->  ( A  e.  {
x  |  ph }  <->  A  e.  { x  |  ps } ) )
4 df-sbc 2956 . 2  |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph }
)
5 df-sbc 2956 . 2  |-  ( [. A  /  x ]. ps  <->  A  e.  { x  |  ps } )
63, 4, 53bitr4g 222 1  |-  ( A. x ( ph  <->  ps )  ->  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    = wceq 1348    e. wcel 2141   {cab 2156   [.wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-sbc 2956
This theorem is referenced by:  csbeq2  3073
  Copyright terms: Public domain W3C validator