ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbi2 GIF version

Theorem sbcbi2 3015
Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
Assertion
Ref Expression
sbcbi2 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcbi2
StepHypRef Expression
1 abbi 2291 . . 3 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
2 eleq2 2241 . . 3 ({𝑥𝜑} = {𝑥𝜓} → (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜓}))
31, 2sylbi 121 . 2 (∀𝑥(𝜑𝜓) → (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜓}))
4 df-sbc 2965 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
5 df-sbc 2965 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
63, 4, 53bitr4g 223 1 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351   = wceq 1353  wcel 2148  {cab 2163  [wsbc 2964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-sbc 2965
This theorem is referenced by:  csbeq2  3083
  Copyright terms: Public domain W3C validator