ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbi2 GIF version

Theorem sbcbi2 3036
Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
Assertion
Ref Expression
sbcbi2 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcbi2
StepHypRef Expression
1 abbi 2307 . . 3 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
2 eleq2 2257 . . 3 ({𝑥𝜑} = {𝑥𝜓} → (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜓}))
31, 2sylbi 121 . 2 (∀𝑥(𝜑𝜓) → (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜓}))
4 df-sbc 2986 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
5 df-sbc 2986 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
63, 4, 53bitr4g 223 1 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wcel 2164  {cab 2179  [wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-sbc 2986
This theorem is referenced by:  csbeq2  3104
  Copyright terms: Public domain W3C validator