| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcbi2 | GIF version | ||
| Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
| Ref | Expression |
|---|---|
| sbcbi2 | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2310 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
| 2 | eleq2 2260 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜓})) | |
| 3 | 1, 2 | sylbi 121 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜓})) |
| 4 | df-sbc 2990 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 5 | df-sbc 2990 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
| 6 | 3, 4, 5 | 3bitr4g 223 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 {cab 2182 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 |
| This theorem is referenced by: csbeq2 3108 |
| Copyright terms: Public domain | W3C validator |