ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcal Unicode version

Theorem sbcal 3006
Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.)
Assertion
Ref Expression
sbcal  |-  ( [. A  /  y ]. A. x ph  <->  A. x [. A  /  y ]. ph )
Distinct variable groups:    x, A    x, y
Allowed substitution hints:    ph( x, y)    A( y)

Proof of Theorem sbcal
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbcex 2963 . 2  |-  ( [. A  /  y ]. A. x ph  ->  A  e.  _V )
2 sbcex 2963 . . 3  |-  ( [. A  /  y ]. ph  ->  A  e.  _V )
32sps 1530 . 2  |-  ( A. x [. A  /  y ]. ph  ->  A  e.  _V )
4 dfsbcq2 2958 . . 3  |-  ( z  =  A  ->  ( [ z  /  y ] A. x ph  <->  [. A  / 
y ]. A. x ph ) )
5 dfsbcq2 2958 . . . 4  |-  ( z  =  A  ->  ( [ z  /  y ] ph  <->  [. A  /  y ]. ph ) )
65albidv 1817 . . 3  |-  ( z  =  A  ->  ( A. x [ z  / 
y ] ph  <->  A. x [. A  /  y ]. ph ) )
7 sbal 1993 . . 3  |-  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
84, 6, 7vtoclbg 2791 . 2  |-  ( A  e.  _V  ->  ( [. A  /  y ]. A. x ph  <->  A. x [. A  /  y ]. ph ) )
91, 3, 8pm5.21nii 699 1  |-  ( [. A  /  y ]. A. x ph  <->  A. x [. A  /  y ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1346    = wceq 1348   [wsb 1755    e. wcel 2141   _Vcvv 2730   [.wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956
This theorem is referenced by:  sbcfung  5222
  Copyright terms: Public domain W3C validator