ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq2 Unicode version

Theorem csbeq2 3069
Description: Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
Assertion
Ref Expression
csbeq2  |-  ( A. x  B  =  C  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )

Proof of Theorem csbeq2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq2 2230 . . . . 5  |-  ( B  =  C  ->  (
y  e.  B  <->  y  e.  C ) )
21alimi 1443 . . . 4  |-  ( A. x  B  =  C  ->  A. x ( y  e.  B  <->  y  e.  C ) )
3 sbcbi2 3001 . . . 4  |-  ( A. x ( y  e.  B  <->  y  e.  C
)  ->  ( [. A  /  x ]. y  e.  B  <->  [. A  /  x ]. y  e.  C
) )
42, 3syl 14 . . 3  |-  ( A. x  B  =  C  ->  ( [. A  /  x ]. y  e.  B  <->  [. A  /  x ]. y  e.  C )
)
54abbidv 2284 . 2  |-  ( A. x  B  =  C  ->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  |  [. A  /  x ]. y  e.  C } )
6 df-csb 3046 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
7 df-csb 3046 . 2  |-  [_ A  /  x ]_ C  =  { y  |  [. A  /  x ]. y  e.  C }
85, 6, 73eqtr4g 2224 1  |-  ( A. x  B  =  C  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136   {cab 2151   [.wsbc 2951   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-sbc 2952  df-csb 3046
This theorem is referenced by:  prodeq2w  11497
  Copyright terms: Public domain W3C validator