ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq2 Unicode version

Theorem csbeq2 3083
Description: Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
Assertion
Ref Expression
csbeq2  |-  ( A. x  B  =  C  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )

Proof of Theorem csbeq2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq2 2241 . . . . 5  |-  ( B  =  C  ->  (
y  e.  B  <->  y  e.  C ) )
21alimi 1455 . . . 4  |-  ( A. x  B  =  C  ->  A. x ( y  e.  B  <->  y  e.  C ) )
3 sbcbi2 3015 . . . 4  |-  ( A. x ( y  e.  B  <->  y  e.  C
)  ->  ( [. A  /  x ]. y  e.  B  <->  [. A  /  x ]. y  e.  C
) )
42, 3syl 14 . . 3  |-  ( A. x  B  =  C  ->  ( [. A  /  x ]. y  e.  B  <->  [. A  /  x ]. y  e.  C )
)
54abbidv 2295 . 2  |-  ( A. x  B  =  C  ->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  |  [. A  /  x ]. y  e.  C } )
6 df-csb 3060 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
7 df-csb 3060 . 2  |-  [_ A  /  x ]_ C  =  { y  |  [. A  /  x ]. y  e.  C }
85, 6, 73eqtr4g 2235 1  |-  ( A. x  B  =  C  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353    e. wcel 2148   {cab 2163   [.wsbc 2964   [_csb 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-sbc 2965  df-csb 3060
This theorem is referenced by:  prodeq2w  11566
  Copyright terms: Public domain W3C validator