ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcim1 Unicode version

Theorem sbcim1 3054
Description: Distribution of class substitution over implication. One direction of sbcimg 3047 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcim1  |-  ( [. A  /  x ]. ( ph  ->  ps )  -> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) )

Proof of Theorem sbcim1
StepHypRef Expression
1 sbcex 3014 . 2  |-  ( [. A  /  x ]. ( ph  ->  ps )  ->  A  e.  _V )
2 sbcimg 3047 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( ph  ->  ps ) 
<->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ps )
) )
32biimpd 144 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( ph  ->  ps )  ->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) ) )
41, 3mpcom 36 1  |-  ( [. A  /  x ]. ( ph  ->  ps )  -> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   _Vcvv 2776   [.wsbc 3005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sbc 3006
This theorem is referenced by:  sbcimdv  3071
  Copyright terms: Public domain W3C validator