ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcim1 Unicode version

Theorem sbcim1 3034
Description: Distribution of class substitution over implication. One direction of sbcimg 3027 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcim1  |-  ( [. A  /  x ]. ( ph  ->  ps )  -> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) )

Proof of Theorem sbcim1
StepHypRef Expression
1 sbcex 2994 . 2  |-  ( [. A  /  x ]. ( ph  ->  ps )  ->  A  e.  _V )
2 sbcimg 3027 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( ph  ->  ps ) 
<->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ps )
) )
32biimpd 144 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( ph  ->  ps )  ->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) ) )
41, 3mpcom 36 1  |-  ( [. A  /  x ]. ( ph  ->  ps )  -> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   _Vcvv 2760   [.wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986
This theorem is referenced by:  sbcimdv  3051
  Copyright terms: Public domain W3C validator