ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcim1 Unicode version

Theorem sbcim1 2999
Description: Distribution of class substitution over implication. One direction of sbcimg 2992 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcim1  |-  ( [. A  /  x ]. ( ph  ->  ps )  -> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) )

Proof of Theorem sbcim1
StepHypRef Expression
1 sbcex 2959 . 2  |-  ( [. A  /  x ]. ( ph  ->  ps )  ->  A  e.  _V )
2 sbcimg 2992 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( ph  ->  ps ) 
<->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ps )
) )
32biimpd 143 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( ph  ->  ps )  ->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) ) )
41, 3mpcom 36 1  |-  ( [. A  /  x ]. ( ph  ->  ps )  -> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   _Vcvv 2726   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952
This theorem is referenced by:  sbcimdv  3016
  Copyright terms: Public domain W3C validator