| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcex | Unicode version | ||
| Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3006 |
. 2
| |
| 2 | elex 2788 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 df-sbc 3006 |
| This theorem is referenced by: sbcco 3027 sbc5 3029 sbcan 3048 sbcor 3050 sbcn1 3053 sbcim1 3054 sbcbi1 3055 sbcal 3057 sbcex2 3059 sbcel1v 3068 sbcel21v 3070 sbcimdv 3071 sbcrext 3083 spesbc 3092 csbprc 3514 opelopabsb 4324 |
| Copyright terms: Public domain | W3C validator |