| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcex | Unicode version | ||
| Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 2999 |
. 2
| |
| 2 | elex 2783 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 df-sbc 2999 |
| This theorem is referenced by: sbcco 3020 sbc5 3022 sbcan 3041 sbcor 3043 sbcn1 3046 sbcim1 3047 sbcbi1 3048 sbcal 3050 sbcex2 3052 sbcel1v 3061 sbcel21v 3063 sbcimdv 3064 sbcrext 3076 spesbc 3084 csbprc 3506 opelopabsb 4306 |
| Copyright terms: Public domain | W3C validator |