ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcn1 Unicode version

Theorem sbcn1 3012
Description: Move negation in and out of class substitution. One direction of sbcng 3005 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcn1  |-  ( [. A  /  x ].  -.  ph 
->  -.  [. A  /  x ]. ph )

Proof of Theorem sbcn1
StepHypRef Expression
1 sbcex 2973 . 2  |-  ( [. A  /  x ].  -.  ph 
->  A  e.  _V )
2 sbcng 3005 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ].  -.  ph  <->  -.  [. A  /  x ]. ph ) )
32biimpd 144 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ].  -.  ph  ->  -.  [. A  /  x ]. ph )
)
41, 3mpcom 36 1  |-  ( [. A  /  x ].  -.  ph 
->  -.  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2148   _Vcvv 2739   [.wsbc 2964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator