ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcimdv Unicode version

Theorem sbcimdv 3064
Description: Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1480). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
Hypothesis
Ref Expression
sbcimdv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
sbcimdv  |-  ( ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem sbcimdv
StepHypRef Expression
1 sbcex 3007 . 2  |-  ( [. A  /  x ]. ps  ->  A  e.  _V )
2 sbcimdv.1 . . . . 5  |-  ( ph  ->  ( ps  ->  ch ) )
32alrimiv 1897 . . . 4  |-  ( ph  ->  A. x ( ps 
->  ch ) )
4 spsbc 3010 . . . 4  |-  ( A  e.  _V  ->  ( A. x ( ps  ->  ch )  ->  [. A  /  x ]. ( ps  ->  ch ) ) )
5 sbcim1 3047 . . . 4  |-  ( [. A  /  x ]. ( ps  ->  ch )  -> 
( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )
63, 4, 5syl56 34 . . 3  |-  ( A  e.  _V  ->  ( ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) )
76com3l 81 . 2  |-  ( ph  ->  ( [. A  /  x ]. ps  ->  ( A  e.  _V  ->  [. A  /  x ]. ch ) ) )
81, 7mpdi 43 1  |-  ( ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    e. wcel 2176   _Vcvv 2772   [.wsbc 2998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sbc 2999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator