Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcimdv | Unicode version |
Description: Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1445). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) |
Ref | Expression |
---|---|
sbcimdv.1 |
Ref | Expression |
---|---|
sbcimdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 2959 | . 2 | |
2 | sbcimdv.1 | . . . . 5 | |
3 | 2 | alrimiv 1862 | . . . 4 |
4 | spsbc 2962 | . . . 4 | |
5 | sbcim1 2999 | . . . 4 | |
6 | 3, 4, 5 | syl56 34 | . . 3 |
7 | 6 | com3l 81 | . 2 |
8 | 1, 7 | mpdi 43 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wcel 2136 cvv 2726 wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |