ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcimdv Unicode version

Theorem sbcimdv 3016
Description: Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1445). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
Hypothesis
Ref Expression
sbcimdv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
sbcimdv  |-  ( ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem sbcimdv
StepHypRef Expression
1 sbcex 2959 . 2  |-  ( [. A  /  x ]. ps  ->  A  e.  _V )
2 sbcimdv.1 . . . . 5  |-  ( ph  ->  ( ps  ->  ch ) )
32alrimiv 1862 . . . 4  |-  ( ph  ->  A. x ( ps 
->  ch ) )
4 spsbc 2962 . . . 4  |-  ( A  e.  _V  ->  ( A. x ( ps  ->  ch )  ->  [. A  /  x ]. ( ps  ->  ch ) ) )
5 sbcim1 2999 . . . 4  |-  ( [. A  /  x ]. ( ps  ->  ch )  -> 
( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )
63, 4, 5syl56 34 . . 3  |-  ( A  e.  _V  ->  ( ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) )
76com3l 81 . 2  |-  ( ph  ->  ( [. A  /  x ]. ps  ->  ( A  e.  _V  ->  [. A  /  x ]. ch ) ) )
81, 7mpdi 43 1  |-  ( ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341    e. wcel 2136   _Vcvv 2726   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator