![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcim1 | GIF version |
Description: Distribution of class substitution over implication. One direction of sbcimg 2894 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
sbcim1 | ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 2862 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → 𝐴 ∈ V) | |
2 | sbcimg 2894 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | |
3 | 2 | biimpd 143 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
4 | 1, 3 | mpcom 36 | 1 ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1445 Vcvv 2633 [wsbc 2854 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-sbc 2855 |
This theorem is referenced by: sbcimdv 2918 |
Copyright terms: Public domain | W3C validator |