ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcng Unicode version

Theorem sbcng 3030
Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
sbcng  |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  ph  <->  -.  [. A  /  x ]. ph ) )

Proof of Theorem sbcng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2992 . 2  |-  ( y  =  A  ->  ( [ y  /  x ]  -.  ph  <->  [. A  /  x ].  -.  ph ) )
2 dfsbcq2 2992 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
32notbid 668 . 2  |-  ( y  =  A  ->  ( -.  [ y  /  x ] ph  <->  -.  [. A  /  x ]. ph ) )
4 sbn 1971 . 2  |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )
51, 3, 4vtoclbg 2825 1  |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  ph  <->  -.  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1364   [wsb 1776    e. wcel 2167   [.wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990
This theorem is referenced by:  sbcn1  3037  sbcnel12g  3101  sbcne12g  3102  difopab  4799  zsupcllemstep  10319
  Copyright terms: Public domain W3C validator