ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcng Unicode version

Theorem sbcng 3069
Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
sbcng  |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  ph  <->  -.  [. A  /  x ]. ph ) )

Proof of Theorem sbcng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3031 . 2  |-  ( y  =  A  ->  ( [ y  /  x ]  -.  ph  <->  [. A  /  x ].  -.  ph ) )
2 dfsbcq2 3031 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
32notbid 671 . 2  |-  ( y  =  A  ->  ( -.  [ y  /  x ] ph  <->  -.  [. A  /  x ]. ph ) )
4 sbn 2003 . 2  |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )
51, 3, 4vtoclbg 2862 1  |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  ph  <->  -.  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1395   [wsb 1808    e. wcel 2200   [.wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029
This theorem is referenced by:  sbcn1  3076  sbcnel12g  3141  sbcne12g  3142  difopab  4854  zsupcllemstep  10444
  Copyright terms: Public domain W3C validator