ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcn1 GIF version

Theorem sbcn1 3037
Description: Move negation in and out of class substitution. One direction of sbcng 3030 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcn1 ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑)

Proof of Theorem sbcn1
StepHypRef Expression
1 sbcex 2998 . 2 ([𝐴 / 𝑥] ¬ 𝜑𝐴 ∈ V)
2 sbcng 3030 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
32biimpd 144 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑))
41, 3mpcom 36 1 ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2167  Vcvv 2763  [wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator