ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcn1 GIF version

Theorem sbcn1 2900
Description: Move negation in and out of class substitution. One direction of sbcng 2893 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcn1 ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑)

Proof of Theorem sbcn1
StepHypRef Expression
1 sbcex 2862 . 2 ([𝐴 / 𝑥] ¬ 𝜑𝐴 ∈ V)
2 sbcng 2893 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
32biimpd 143 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑))
41, 3mpcom 36 1 ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 1445  Vcvv 2633  [wsbc 2854
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-sbc 2855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator