ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcom Unicode version

Theorem sbcom 2003
Description: A commutativity law for substitution. (Contributed by NM, 27-May-1997.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
Assertion
Ref Expression
sbcom  |-  ( [ y  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ y  /  z ] ph )

Proof of Theorem sbcom
StepHypRef Expression
1 sbco3 2002 . 2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] [ x  /  z ] ph )
2 sbcocom 1998 . 2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  z ] [ y  /  x ] ph )
3 sbcocom 1998 . 2  |-  ( [ y  /  x ] [ x  /  z ] ph  <->  [ y  /  x ] [ y  /  z ] ph )
41, 2, 33bitr3i 210 1  |-  ( [ y  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ y  /  z ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by:  sb9  2007
  Copyright terms: Public domain W3C validator