Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbt Unicode version

Theorem nfsbt 1905
 Description: Closed form of nfsb 1877. (Contributed by Jim Kingdon, 9-May-2018.)
Assertion
Ref Expression
nfsbt
Distinct variable group:   ,
Allowed substitution hints:   (,,)

Proof of Theorem nfsbt
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-17 1471 . 2
2 nfsbxyt 1874 . . . . 5
32alimi 1396 . . . 4
4 nfsbxyt 1874 . . . 4
53, 4syl 14 . . 3
6 nfv 1473 . . . . 5
76sbco2 1894 . . . 4
87nfbii 1414 . . 3
95, 8sylib 121 . 2
101, 9syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1294  wnf 1401  wsb 1699 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480 This theorem depends on definitions:  df-bi 116  df-nf 1402  df-sb 1700 This theorem is referenced by:  nfsbd  1906  setindft  12568
 Copyright terms: Public domain W3C validator