ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco3 Unicode version

Theorem sbco3 2002
Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
Assertion
Ref Expression
sbco3  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )

Proof of Theorem sbco3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sbco3xzyz 2001 . . 3  |-  ( [ w  /  y ] [ y  /  x ] ph  <->  [ w  /  x ] [ x  /  y ] ph )
21sbbii 1788 . 2  |-  ( [ z  /  w ] [ w  /  y ] [ y  /  x ] ph  <->  [ z  /  w ] [ w  /  x ] [ x  /  y ] ph )
3 ax-17 1549 . . 3  |-  ( [ y  /  x ] ph  ->  A. w [ y  /  x ] ph )
43sbco2h 1992 . 2  |-  ( [ z  /  w ] [ w  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ y  /  x ] ph )
5 ax-17 1549 . . 3  |-  ( [ x  /  y ]
ph  ->  A. w [ x  /  y ] ph )
65sbco2h 1992 . 2  |-  ( [ z  /  w ] [ w  /  x ] [ x  /  y ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
72, 4, 63bitr3i 210 1  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by:  sbcom  2003
  Copyright terms: Public domain W3C validator