ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco3 Unicode version

Theorem sbco3 1947
Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
Assertion
Ref Expression
sbco3  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )

Proof of Theorem sbco3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sbco3xzyz 1946 . . 3  |-  ( [ w  /  y ] [ y  /  x ] ph  <->  [ w  /  x ] [ x  /  y ] ph )
21sbbii 1738 . 2  |-  ( [ z  /  w ] [ w  /  y ] [ y  /  x ] ph  <->  [ z  /  w ] [ w  /  x ] [ x  /  y ] ph )
3 ax-17 1506 . . 3  |-  ( [ y  /  x ] ph  ->  A. w [ y  /  x ] ph )
43sbco2h 1937 . 2  |-  ( [ z  /  w ] [ w  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ y  /  x ] ph )
5 ax-17 1506 . . 3  |-  ( [ x  /  y ]
ph  ->  A. w [ x  /  y ] ph )
65sbco2h 1937 . 2  |-  ( [ z  /  w ] [ w  /  x ] [ x  /  y ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
72, 4, 63bitr3i 209 1  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736
This theorem is referenced by:  sbcom  1948
  Copyright terms: Public domain W3C validator