ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcocom Unicode version

Theorem sbcocom 1893
Description: Relationship between composition and commutativity for substitution. (Contributed by Jim Kingdon, 28-Feb-2018.)
Assertion
Ref Expression
sbcocom  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph )

Proof of Theorem sbcocom
StepHypRef Expression
1 equsb1 1716 . . 3  |-  [ z  /  y ] y  =  z
2 sbequ 1769 . . . 4  |-  ( y  =  z  ->  ( [ y  /  x ] ph  <->  [ z  /  x ] ph ) )
32sbimi 1695 . . 3  |-  ( [ z  /  y ] y  =  z  ->  [ z  /  y ] ( [ y  /  x ] ph  <->  [ z  /  x ] ph ) )
41, 3ax-mp 7 . 2  |-  [ z  /  y ] ( [ y  /  x ] ph  <->  [ z  /  x ] ph )
5 sbbi 1882 . 2  |-  ( [ z  /  y ] ( [ y  /  x ] ph  <->  [ z  /  x ] ph )  <->  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph ) )
64, 5mpbi 144 1  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1693
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694
This theorem is referenced by:  sbcomv  1894  sbco3xzyz  1896  sbcom  1898
  Copyright terms: Public domain W3C validator