ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcocom Unicode version

Theorem sbcocom 1998
Description: Relationship between composition and commutativity for substitution. (Contributed by Jim Kingdon, 28-Feb-2018.)
Assertion
Ref Expression
sbcocom  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph )

Proof of Theorem sbcocom
StepHypRef Expression
1 equsb1 1808 . . 3  |-  [ z  /  y ] y  =  z
2 sbequ 1863 . . . 4  |-  ( y  =  z  ->  ( [ y  /  x ] ph  <->  [ z  /  x ] ph ) )
32sbimi 1787 . . 3  |-  ( [ z  /  y ] y  =  z  ->  [ z  /  y ] ( [ y  /  x ] ph  <->  [ z  /  x ] ph ) )
41, 3ax-mp 5 . 2  |-  [ z  /  y ] ( [ y  /  x ] ph  <->  [ z  /  x ] ph )
5 sbbi 1987 . 2  |-  ( [ z  /  y ] ( [ y  /  x ] ph  <->  [ z  /  x ] ph )  <->  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph ) )
64, 5mpbi 145 1  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by:  sbcomv  1999  sbco3xzyz  2001  sbcom  2003
  Copyright terms: Public domain W3C validator