ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcocom Unicode version

Theorem sbcocom 1999
Description: Relationship between composition and commutativity for substitution. (Contributed by Jim Kingdon, 28-Feb-2018.)
Assertion
Ref Expression
sbcocom  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph )

Proof of Theorem sbcocom
StepHypRef Expression
1 equsb1 1809 . . 3  |-  [ z  /  y ] y  =  z
2 sbequ 1864 . . . 4  |-  ( y  =  z  ->  ( [ y  /  x ] ph  <->  [ z  /  x ] ph ) )
32sbimi 1788 . . 3  |-  ( [ z  /  y ] y  =  z  ->  [ z  /  y ] ( [ y  /  x ] ph  <->  [ z  /  x ] ph ) )
41, 3ax-mp 5 . 2  |-  [ z  /  y ] ( [ y  /  x ] ph  <->  [ z  /  x ] ph )
5 sbbi 1988 . 2  |-  ( [ z  /  y ] ( [ y  /  x ] ph  <->  [ z  /  x ] ph )  <->  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph ) )
64, 5mpbi 145 1  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  sbcomv  2000  sbco3xzyz  2002  sbcom  2004
  Copyright terms: Public domain W3C validator