ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb9 Unicode version

Theorem sb9 1995
Description: Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
Assertion
Ref Expression
sb9  |-  ( A. x [ x  /  y ] ph  <->  A. y [ y  /  x ] ph )

Proof of Theorem sb9
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sb9v 1994 . . 3  |-  ( A. y [ y  /  w ] [ w  /  x ] ph  <->  A. w [ w  /  y ] [
w  /  x ] ph )
2 sbcom 1991 . . . 4  |-  ( [ w  /  y ] [ w  /  x ] ph  <->  [ w  /  x ] [ w  /  y ] ph )
32albii 1481 . . 3  |-  ( A. w [ w  /  y ] [ w  /  x ] ph  <->  A. w [ w  /  x ] [ w  /  y ] ph )
4 sb9v 1994 . . 3  |-  ( A. w [ w  /  x ] [ w  /  y ] ph  <->  A. x [ x  /  w ] [ w  /  y ] ph )
51, 3, 43bitri 206 . 2  |-  ( A. y [ y  /  w ] [ w  /  x ] ph  <->  A. x [ x  /  w ] [ w  /  y ] ph )
6 ax-17 1537 . . . 4  |-  ( ph  ->  A. w ph )
76sbco2h 1980 . . 3  |-  ( [ y  /  w ] [ w  /  x ] ph  <->  [ y  /  x ] ph )
87albii 1481 . 2  |-  ( A. y [ y  /  w ] [ w  /  x ] ph  <->  A. y [ y  /  x ] ph )
96sbco2h 1980 . . 3  |-  ( [ x  /  w ] [ w  /  y ] ph  <->  [ x  /  y ] ph )
109albii 1481 . 2  |-  ( A. x [ x  /  w ] [ w  /  y ] ph  <->  A. x [ x  /  y ] ph )
115, 8, 103bitr3ri 211 1  |-  ( A. x [ x  /  y ] ph  <->  A. y [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362   [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by:  sb9i  1996
  Copyright terms: Public domain W3C validator