ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcorg Unicode version

Theorem sbcorg 3035
Description: Distribution of class substitution over disjunction. (Contributed by NM, 21-May-2004.)
Assertion
Ref Expression
sbcorg  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  \/  ps ) 
<->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) ) )

Proof of Theorem sbcorg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2992 . 2  |-  ( y  =  A  ->  ( [ y  /  x ] ( ph  \/  ps )  <->  [. A  /  x ]. ( ph  \/  ps ) ) )
2 dfsbcq2 2992 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
3 dfsbcq2 2992 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ps  <->  [. A  /  x ]. ps ) )
42, 3orbi12d 794 . 2  |-  ( y  =  A  ->  (
( [ y  /  x ] ph  \/  [
y  /  x ] ps )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) ) )
5 sbor 1973 . 2  |-  ( [ y  /  x ]
( ph  \/  ps ) 
<->  ( [ y  /  x ] ph  \/  [
y  /  x ] ps ) )
61, 4, 5vtoclbg 2825 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  \/  ps ) 
<->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    = wceq 1364   [wsb 1776    e. wcel 2167   [.wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator