![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtoclbg | Unicode version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
vtoclbg.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtoclbg.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtoclbg.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
vtoclbg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclbg.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | vtoclbg.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bibi12d 234 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | vtoclbg.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | vtoclg 2701 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 |
This theorem is referenced by: pm13.183 2776 sbc8g 2869 sbcco 2883 sbc5 2885 sbcie2g 2894 eqsbc3 2900 sbcng 2901 sbcimg 2902 sbcan 2903 sbcang 2904 sbcor 2905 sbcorg 2906 sbcbig 2907 sbcal 2912 sbcalg 2913 sbcex2 2914 sbcexg 2915 sbcel1v 2923 sbcralg 2939 sbcreug 2941 sbcel12g 2968 sbceqg 2969 csbiebg 2992 elpwg 3465 snssg 3603 preq12bg 3647 elintg 3726 elintrabg 3731 sbcbrg 3924 opelresg 4762 elixpsn 6559 ixpsnf1o 6560 domeng 6576 |
Copyright terms: Public domain | W3C validator |