| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > vtoclbg | Unicode version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| vtoclbg.1 | 
 | 
| vtoclbg.2 | 
 | 
| vtoclbg.3 | 
 | 
| Ref | Expression | 
|---|---|
| vtoclbg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vtoclbg.1 | 
. . 3
 | |
| 2 | vtoclbg.2 | 
. . 3
 | |
| 3 | 1, 2 | bibi12d 235 | 
. 2
 | 
| 4 | vtoclbg.3 | 
. 2
 | |
| 5 | 3, 4 | vtoclg 2824 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 | 
| This theorem is referenced by: pm13.183 2902 sbc8g 2997 sbcco 3011 sbc5 3013 sbcie2g 3023 eqsbc1 3029 sbcng 3030 sbcimg 3031 sbcan 3032 sbcang 3033 sbcor 3034 sbcorg 3035 sbcbig 3036 sbcal 3041 sbcalg 3042 sbcex2 3043 sbcexg 3044 sbcel1v 3052 sbcralg 3068 sbcreug 3070 sbcel12g 3099 sbceqg 3100 csbiebg 3127 elpwg 3613 snssgOLD 3758 preq12bg 3803 elintg 3882 elintrabg 3887 sbcbrg 4087 opelresg 4953 elixpsn 6794 ixpsnf1o 6795 domeng 6811 | 
| Copyright terms: Public domain | W3C validator |