![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtoclbg | Unicode version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
vtoclbg.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtoclbg.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtoclbg.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
vtoclbg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclbg.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | vtoclbg.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bibi12d 235 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | vtoclbg.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | vtoclg 2799 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 |
This theorem is referenced by: pm13.183 2877 sbc8g 2972 sbcco 2986 sbc5 2988 sbcie2g 2998 eqsbc1 3004 sbcng 3005 sbcimg 3006 sbcan 3007 sbcang 3008 sbcor 3009 sbcorg 3010 sbcbig 3011 sbcal 3016 sbcalg 3017 sbcex2 3018 sbcexg 3019 sbcel1v 3027 sbcralg 3043 sbcreug 3045 sbcel12g 3074 sbceqg 3075 csbiebg 3101 elpwg 3585 snssgOLD 3730 preq12bg 3775 elintg 3854 elintrabg 3859 sbcbrg 4059 opelresg 4916 elixpsn 6737 ixpsnf1o 6738 domeng 6754 |
Copyright terms: Public domain | W3C validator |