![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtoclbg | Unicode version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
vtoclbg.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtoclbg.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtoclbg.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
vtoclbg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclbg.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | vtoclbg.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bibi12d 235 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | vtoclbg.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | vtoclg 2821 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 |
This theorem is referenced by: pm13.183 2899 sbc8g 2994 sbcco 3008 sbc5 3010 sbcie2g 3020 eqsbc1 3026 sbcng 3027 sbcimg 3028 sbcan 3029 sbcang 3030 sbcor 3031 sbcorg 3032 sbcbig 3033 sbcal 3038 sbcalg 3039 sbcex2 3040 sbcexg 3041 sbcel1v 3049 sbcralg 3065 sbcreug 3067 sbcel12g 3096 sbceqg 3097 csbiebg 3124 elpwg 3610 snssgOLD 3755 preq12bg 3800 elintg 3879 elintrabg 3884 sbcbrg 4084 opelresg 4950 elixpsn 6791 ixpsnf1o 6792 domeng 6808 |
Copyright terms: Public domain | W3C validator |