| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclbg | Unicode version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| vtoclbg.1 |
|
| vtoclbg.2 |
|
| vtoclbg.3 |
|
| Ref | Expression |
|---|---|
| vtoclbg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclbg.1 |
. . 3
| |
| 2 | vtoclbg.2 |
. . 3
| |
| 3 | 1, 2 | bibi12d 235 |
. 2
|
| 4 | vtoclbg.3 |
. 2
| |
| 5 | 3, 4 | vtoclg 2838 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 |
| This theorem is referenced by: pm13.183 2918 sbc8g 3013 sbcco 3027 sbc5 3029 sbcie2g 3039 eqsbc1 3045 sbcng 3046 sbcimg 3047 sbcan 3048 sbcang 3049 sbcor 3050 sbcorg 3051 sbcbig 3052 sbcal 3057 sbcalg 3058 sbcex2 3059 sbcexg 3060 sbcel1v 3068 sbcralg 3084 sbcreug 3086 sbcel12g 3116 sbceqg 3117 csbiebg 3144 elpwg 3634 snssgOLD 3780 preq12bg 3827 elintg 3907 elintrabg 3912 sbcbrg 4114 opelresg 4985 elixpsn 6845 ixpsnf1o 6846 domeng 6864 |
| Copyright terms: Public domain | W3C validator |