ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclbg Unicode version

Theorem vtoclbg 2834
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.)
Hypotheses
Ref Expression
vtoclbg.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
vtoclbg.2  |-  ( x  =  A  ->  ( ps 
<->  th ) )
vtoclbg.3  |-  ( ph  <->  ps )
Assertion
Ref Expression
vtoclbg  |-  ( A  e.  V  ->  ( ch 
<->  th ) )
Distinct variable groups:    x, A    ch, x    th, x
Allowed substitution hints:    ph( x)    ps( x)    V( x)

Proof of Theorem vtoclbg
StepHypRef Expression
1 vtoclbg.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
2 vtoclbg.2 . . 3  |-  ( x  =  A  ->  ( ps 
<->  th ) )
31, 2bibi12d 235 . 2  |-  ( x  =  A  ->  (
( ph  <->  ps )  <->  ( ch  <->  th ) ) )
4 vtoclbg.3 . 2  |-  ( ph  <->  ps )
53, 4vtoclg 2833 1  |-  ( A  e.  V  ->  ( ch 
<->  th ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774
This theorem is referenced by:  pm13.183  2911  sbc8g  3006  sbcco  3020  sbc5  3022  sbcie2g  3032  eqsbc1  3038  sbcng  3039  sbcimg  3040  sbcan  3041  sbcang  3042  sbcor  3043  sbcorg  3044  sbcbig  3045  sbcal  3050  sbcalg  3051  sbcex2  3052  sbcexg  3053  sbcel1v  3061  sbcralg  3077  sbcreug  3079  sbcel12g  3108  sbceqg  3109  csbiebg  3136  elpwg  3624  snssgOLD  3769  preq12bg  3814  elintg  3893  elintrabg  3898  sbcbrg  4098  opelresg  4966  elixpsn  6822  ixpsnf1o  6823  domeng  6841
  Copyright terms: Public domain W3C validator