| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclbg | Unicode version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| vtoclbg.1 |
|
| vtoclbg.2 |
|
| vtoclbg.3 |
|
| Ref | Expression |
|---|---|
| vtoclbg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclbg.1 |
. . 3
| |
| 2 | vtoclbg.2 |
. . 3
| |
| 3 | 1, 2 | bibi12d 235 |
. 2
|
| 4 | vtoclbg.3 |
. 2
| |
| 5 | 3, 4 | vtoclg 2833 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: pm13.183 2911 sbc8g 3006 sbcco 3020 sbc5 3022 sbcie2g 3032 eqsbc1 3038 sbcng 3039 sbcimg 3040 sbcan 3041 sbcang 3042 sbcor 3043 sbcorg 3044 sbcbig 3045 sbcal 3050 sbcalg 3051 sbcex2 3052 sbcexg 3053 sbcel1v 3061 sbcralg 3077 sbcreug 3079 sbcel12g 3108 sbceqg 3109 csbiebg 3136 elpwg 3624 snssgOLD 3769 preq12bg 3814 elintg 3893 elintrabg 3898 sbcbrg 4098 opelresg 4966 elixpsn 6822 ixpsnf1o 6823 domeng 6841 |
| Copyright terms: Public domain | W3C validator |