![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfsbcq2 | Unicode version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1774 and substitution for class variables df-sbc 2987. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 2988. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2256 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-clab 2180 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-sbc 2987 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 2, 4 | 3bitr3g 222 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-clab 2180 df-cleq 2186 df-clel 2189 df-sbc 2987 |
This theorem is referenced by: sbsbc 2990 sbc8g 2994 sbceq1a 2996 sbc5 3010 sbcng 3027 sbcimg 3028 sbcan 3029 sbcang 3030 sbcor 3031 sbcorg 3032 sbcbig 3033 sbcal 3038 sbcalg 3039 sbcex2 3040 sbcexg 3041 sbcel1v 3049 sbctt 3053 sbcralt 3063 sbcrext 3064 sbcralg 3065 sbcreug 3067 rspsbc 3069 rspesbca 3071 sbcel12g 3096 sbceqg 3097 sbcbrg 4084 csbopabg 4108 opelopabsb 4291 findes 4636 iota4 5235 csbiotag 5248 csbriotag 5887 nn0ind-raph 9437 uzind4s 9658 bezoutlemmain 12138 bezoutlemex 12141 |
Copyright terms: Public domain | W3C validator |