Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcor Unicode version

Theorem sbcor 2954
 Description: Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.)
Assertion
Ref Expression
sbcor

Proof of Theorem sbcor
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbcex 2918 . 2
2 sbcex 2918 . . 3
3 sbcex 2918 . . 3
42, 3jaoi 706 . 2
5 dfsbcq2 2913 . . 3
6 dfsbcq2 2913 . . . 4
7 dfsbcq2 2913 . . . 4
86, 7orbi12d 783 . . 3
9 sbor 1928 . . 3
105, 8, 9vtoclbg 2748 . 2
111, 4, 10pm5.21nii 694 1
 Colors of variables: wff set class Syntax hints:   wb 104   wo 698   wceq 1332   wcel 1481  wsb 1736  cvv 2687  wsbc 2910 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2689  df-sbc 2911 This theorem is referenced by:  rabrsndc  3595
 Copyright terms: Public domain W3C validator