ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcor Unicode version

Theorem sbcor 2995
Description: Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.)
Assertion
Ref Expression
sbcor  |-  ( [. A  /  x ]. ( ph  \/  ps )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) )

Proof of Theorem sbcor
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbcex 2959 . 2  |-  ( [. A  /  x ]. ( ph  \/  ps )  ->  A  e.  _V )
2 sbcex 2959 . . 3  |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
3 sbcex 2959 . . 3  |-  ( [. A  /  x ]. ps  ->  A  e.  _V )
42, 3jaoi 706 . 2  |-  ( (
[. A  /  x ]. ph  \/  [. A  /  x ]. ps )  ->  A  e.  _V )
5 dfsbcq2 2954 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ( ph  \/  ps )  <->  [. A  /  x ]. ( ph  \/  ps ) ) )
6 dfsbcq2 2954 . . . 4  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
7 dfsbcq2 2954 . . . 4  |-  ( y  =  A  ->  ( [ y  /  x ] ps  <->  [. A  /  x ]. ps ) )
86, 7orbi12d 783 . . 3  |-  ( y  =  A  ->  (
( [ y  /  x ] ph  \/  [
y  /  x ] ps )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) ) )
9 sbor 1942 . . 3  |-  ( [ y  /  x ]
( ph  \/  ps ) 
<->  ( [ y  /  x ] ph  \/  [
y  /  x ] ps ) )
105, 8, 9vtoclbg 2787 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( ph  \/  ps ) 
<->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) ) )
111, 4, 10pm5.21nii 694 1  |-  ( [. A  /  x ]. ( ph  \/  ps )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 698    = wceq 1343   [wsb 1750    e. wcel 2136   _Vcvv 2726   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952
This theorem is referenced by:  rabrsndc  3644
  Copyright terms: Public domain W3C validator