ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcor Unicode version

Theorem sbcor 3073
Description: Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.)
Assertion
Ref Expression
sbcor  |-  ( [. A  /  x ]. ( ph  \/  ps )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) )

Proof of Theorem sbcor
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbcex 3037 . 2  |-  ( [. A  /  x ]. ( ph  \/  ps )  ->  A  e.  _V )
2 sbcex 3037 . . 3  |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
3 sbcex 3037 . . 3  |-  ( [. A  /  x ]. ps  ->  A  e.  _V )
42, 3jaoi 721 . 2  |-  ( (
[. A  /  x ]. ph  \/  [. A  /  x ]. ps )  ->  A  e.  _V )
5 dfsbcq2 3031 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ( ph  \/  ps )  <->  [. A  /  x ]. ( ph  \/  ps ) ) )
6 dfsbcq2 3031 . . . 4  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
7 dfsbcq2 3031 . . . 4  |-  ( y  =  A  ->  ( [ y  /  x ] ps  <->  [. A  /  x ]. ps ) )
86, 7orbi12d 798 . . 3  |-  ( y  =  A  ->  (
( [ y  /  x ] ph  \/  [
y  /  x ] ps )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) ) )
9 sbor 2005 . . 3  |-  ( [ y  /  x ]
( ph  \/  ps ) 
<->  ( [ y  /  x ] ph  \/  [
y  /  x ] ps ) )
105, 8, 9vtoclbg 2862 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( ph  \/  ps ) 
<->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) ) )
111, 4, 10pm5.21nii 709 1  |-  ( [. A  /  x ]. ( ph  \/  ps )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 713    = wceq 1395   [wsb 1808    e. wcel 2200   _Vcvv 2799   [.wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029
This theorem is referenced by:  rabrsndc  3734
  Copyright terms: Public domain W3C validator