ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota4an Unicode version

Theorem iota4an 5198
Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4an  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ph )

Proof of Theorem iota4an
StepHypRef Expression
1 iota4 5197 . 2  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ( ph  /\  ps ) )
2 euiotaex 5195 . . . 4  |-  ( E! x ( ph  /\  ps )  ->  ( iota
x ( ph  /\  ps ) )  e.  _V )
3 simpl 109 . . . . 5  |-  ( (
ph  /\  ps )  ->  ph )
43sbcth 2977 . . . 4  |-  ( ( iota x ( ph  /\ 
ps ) )  e. 
_V  ->  [. ( iota x
( ph  /\  ps )
)  /  x ]. ( ( ph  /\  ps )  ->  ph )
)
52, 4syl 14 . . 3  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ( ( ph  /\  ps )  ->  ph )
)
6 sbcimg 3005 . . . 4  |-  ( ( iota x ( ph  /\ 
ps ) )  e. 
_V  ->  ( [. ( iota x ( ph  /\  ps ) )  /  x ]. ( ( ph  /\  ps )  ->  ph )  <->  (
[. ( iota x
( ph  /\  ps )
)  /  x ]. ( ph  /\  ps )  ->  [. ( iota x
( ph  /\  ps )
)  /  x ]. ph ) ) )
72, 6syl 14 . . 3  |-  ( E! x ( ph  /\  ps )  ->  ( [. ( iota x ( ph  /\ 
ps ) )  /  x ]. ( ( ph  /\ 
ps )  ->  ph )  <->  (
[. ( iota x
( ph  /\  ps )
)  /  x ]. ( ph  /\  ps )  ->  [. ( iota x
( ph  /\  ps )
)  /  x ]. ph ) ) )
85, 7mpbid 147 . 2  |-  ( E! x ( ph  /\  ps )  ->  ( [. ( iota x ( ph  /\ 
ps ) )  /  x ]. ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ph ) )
91, 8mpd 13 1  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E!weu 2026    e. wcel 2148   _Vcvv 2738   [.wsbc 2963   iotacio 5177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-sn 3599  df-pr 3600  df-uni 3811  df-iota 5179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator