Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcth | GIF version |
Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
Ref | Expression |
---|---|
sbcth.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
sbcth | ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcth.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1437 | . 2 ⊢ ∀𝑥𝜑 |
3 | spsbc 2962 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | |
4 | 2, 3 | mpi 15 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∈ wcel 2136 [wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 df-sbc 2952 |
This theorem is referenced by: rabrsndc 3644 iota4an 5172 |
Copyright terms: Public domain | W3C validator |