![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcth | GIF version |
Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
Ref | Expression |
---|---|
sbcth.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
sbcth | ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcth.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1459 | . 2 ⊢ ∀𝑥𝜑 |
3 | spsbc 2986 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | |
4 | 2, 3 | mpi 15 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1361 ∈ wcel 2158 [wsbc 2974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-v 2751 df-sbc 2975 |
This theorem is referenced by: rabrsndc 3672 iota4an 5209 |
Copyright terms: Public domain | W3C validator |