ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcth GIF version

Theorem sbcth 3019
Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.)
Hypothesis
Ref Expression
sbcth.1 𝜑
Assertion
Ref Expression
sbcth (𝐴𝑉[𝐴 / 𝑥]𝜑)

Proof of Theorem sbcth
StepHypRef Expression
1 sbcth.1 . . 3 𝜑
21ax-gen 1473 . 2 𝑥𝜑
3 spsbc 3017 . 2 (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
42, 3mpi 15 1 (𝐴𝑉[𝐴 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wcel 2178  [wsbc 3005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778  df-sbc 3006
This theorem is referenced by:  rabrsndc  3711  iota4an  5271
  Copyright terms: Public domain W3C validator