| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcth | GIF version | ||
| Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcth.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| sbcth | ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcth.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1471 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | spsbc 3009 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | |
| 4 | 2, 3 | mpi 15 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 ∈ wcel 2175 [wsbc 2997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 df-sbc 2998 |
| This theorem is referenced by: rabrsndc 3700 iota4an 5251 |
| Copyright terms: Public domain | W3C validator |