ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcth GIF version

Theorem sbcth 2968
Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.)
Hypothesis
Ref Expression
sbcth.1 𝜑
Assertion
Ref Expression
sbcth (𝐴𝑉[𝐴 / 𝑥]𝜑)

Proof of Theorem sbcth
StepHypRef Expression
1 sbcth.1 . . 3 𝜑
21ax-gen 1442 . 2 𝑥𝜑
3 spsbc 2966 . 2 (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
42, 3mpi 15 1 (𝐴𝑉[𝐴 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wcel 2141  [wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732  df-sbc 2956
This theorem is referenced by:  rabrsndc  3651  iota4an  5179
  Copyright terms: Public domain W3C validator