Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabrsndc | Unicode version |
Description: A class abstraction over a decidable proposition restricted to a singleton is either the empty set or the singleton itself. (Contributed by Jim Kingdon, 8-Aug-2018.) |
Ref | Expression |
---|---|
rabrsndc.1 | |
rabrsndc.2 | DECID |
Ref | Expression |
---|---|
rabrsndc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabrsndc.1 | . . . . . 6 | |
2 | rabrsndc.2 | . . . . . . . 8 DECID | |
3 | pm2.1dc 823 | . . . . . . . 8 DECID | |
4 | 2, 3 | ax-mp 5 | . . . . . . 7 |
5 | 4 | sbcth 2950 | . . . . . 6 |
6 | 1, 5 | ax-mp 5 | . . . . 5 |
7 | sbcor 2981 | . . . . 5 | |
8 | 6, 7 | mpbi 144 | . . . 4 |
9 | ralsns 3597 | . . . . . 6 | |
10 | 1, 9 | ax-mp 5 | . . . . 5 |
11 | ralsns 3597 | . . . . . 6 | |
12 | 1, 11 | ax-mp 5 | . . . . 5 |
13 | 10, 12 | orbi12i 754 | . . . 4 |
14 | 8, 13 | mpbir 145 | . . 3 |
15 | rabeq0 3423 | . . . 4 | |
16 | eqcom 2159 | . . . . 5 | |
17 | rabid2 2633 | . . . . 5 | |
18 | 16, 17 | bitri 183 | . . . 4 |
19 | 15, 18 | orbi12i 754 | . . 3 |
20 | 14, 19 | mpbir 145 | . 2 |
21 | eqeq1 2164 | . . 3 | |
22 | eqeq1 2164 | . . 3 | |
23 | 21, 22 | orbi12d 783 | . 2 |
24 | 20, 23 | mpbiri 167 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wo 698 DECID wdc 820 wceq 1335 wcel 2128 wral 2435 crab 2439 cvv 2712 wsbc 2937 c0 3394 csn 3560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-nul 3395 df-sn 3566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |