| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabrsndc | Unicode version | ||
| Description: A class abstraction over a decidable proposition restricted to a singleton is either the empty set or the singleton itself. (Contributed by Jim Kingdon, 8-Aug-2018.) |
| Ref | Expression |
|---|---|
| rabrsndc.1 |
|
| rabrsndc.2 |
|
| Ref | Expression |
|---|---|
| rabrsndc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabrsndc.1 |
. . . . . 6
| |
| 2 | rabrsndc.2 |
. . . . . . . 8
| |
| 3 | pm2.1dc 842 |
. . . . . . . 8
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . 7
|
| 5 | 4 | sbcth 3042 |
. . . . . 6
|
| 6 | 1, 5 | ax-mp 5 |
. . . . 5
|
| 7 | sbcor 3073 |
. . . . 5
| |
| 8 | 6, 7 | mpbi 145 |
. . . 4
|
| 9 | ralsns 3704 |
. . . . . 6
| |
| 10 | 1, 9 | ax-mp 5 |
. . . . 5
|
| 11 | ralsns 3704 |
. . . . . 6
| |
| 12 | 1, 11 | ax-mp 5 |
. . . . 5
|
| 13 | 10, 12 | orbi12i 769 |
. . . 4
|
| 14 | 8, 13 | mpbir 146 |
. . 3
|
| 15 | rabeq0 3521 |
. . . 4
| |
| 16 | eqcom 2231 |
. . . . 5
| |
| 17 | rabid2 2708 |
. . . . 5
| |
| 18 | 16, 17 | bitri 184 |
. . . 4
|
| 19 | 15, 18 | orbi12i 769 |
. . 3
|
| 20 | 14, 19 | mpbir 146 |
. 2
|
| 21 | eqeq1 2236 |
. . 3
| |
| 22 | eqeq1 2236 |
. . 3
| |
| 23 | 21, 22 | orbi12d 798 |
. 2
|
| 24 | 20, 23 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-nul 3492 df-sn 3672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |