ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcthdv GIF version

Theorem sbcthdv 3020
Description: Deduction version of sbcth 3019. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
sbcthdv.1 (𝜑𝜓)
Assertion
Ref Expression
sbcthdv ((𝜑𝐴𝑉) → [𝐴 / 𝑥]𝜓)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem sbcthdv
StepHypRef Expression
1 sbcthdv.1 . . 3 (𝜑𝜓)
21alrimiv 1898 . 2 (𝜑 → ∀𝑥𝜓)
3 spsbc 3017 . 2 (𝐴𝑉 → (∀𝑥𝜓[𝐴 / 𝑥]𝜓))
42, 3mpan9 281 1 ((𝜑𝐴𝑉) → [𝐴 / 𝑥]𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371  wcel 2178  [wsbc 3005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778  df-sbc 3006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator