| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcthdv | GIF version | ||
| Description: Deduction version of sbcth 3003. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbcthdv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sbcthdv | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcthdv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1888 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
| 3 | spsbc 3001 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜓 → [𝐴 / 𝑥]𝜓)) | |
| 4 | 2, 3 | mpan9 281 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∈ wcel 2167 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 df-sbc 2990 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |