ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbf GIF version

Theorem sbf 1791
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1 𝑥𝜑
Assertion
Ref Expression
sbf ([𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . . 3 𝑥𝜑
21nfri 1533 . 2 (𝜑 → ∀𝑥𝜑)
32sbh 1790 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wnf 1474  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  sbf2  1792  sbequ5  1796  sbequ6  1797  sbt  1798  sblim  1976  moimv  2111  moanim  2119  sbabel  2366  nfcdeq  2986  oprcl  3832
  Copyright terms: Public domain W3C validator