| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbf | GIF version | ||
| Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbf.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1543 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | sbh 1800 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 Ⅎwnf 1484 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: sbf2 1802 sbequ5 1806 sbequ6 1807 sbt 1808 sblim 1986 moimv 2121 moanim 2129 sbabel 2376 nfcdeq 2997 oprcl 3846 |
| Copyright terms: Public domain | W3C validator |