| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbf | GIF version | ||
| Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbf.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1533 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | sbh 1790 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 Ⅎwnf 1474 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: sbf2 1792 sbequ5 1796 sbequ6 1797 sbt 1798 sblim 1976 moimv 2111 moanim 2119 sbabel 2366 nfcdeq 2986 oprcl 3832 |
| Copyright terms: Public domain | W3C validator |