ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbf GIF version

Theorem sbf 1823
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1 𝑥𝜑
Assertion
Ref Expression
sbf ([𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . . 3 𝑥𝜑
21nfri 1565 . 2 (𝜑 → ∀𝑥𝜑)
32sbh 1822 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wnf 1506  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by:  sbf2  1824  sbequ5  1828  sbequ6  1829  sbt  1830  sblim  2008  moimv  2144  moanim  2152  sbabel  2399  nfcdeq  3025  oprcl  3880
  Copyright terms: Public domain W3C validator