ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbf GIF version

Theorem sbf 1788
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1 𝑥𝜑
Assertion
Ref Expression
sbf ([𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . . 3 𝑥𝜑
21nfri 1530 . 2 (𝜑 → ∀𝑥𝜑)
32sbh 1787 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wnf 1471  [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by:  sbf2  1789  sbequ5  1793  sbequ6  1794  sbt  1795  sblim  1969  moimv  2104  moanim  2112  sbabel  2359  nfcdeq  2974  oprcl  3817
  Copyright terms: Public domain W3C validator