ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sblim Unicode version

Theorem sblim 1957
Description: Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sblim.1  |-  F/ x ps
Assertion
Ref Expression
sblim  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  ps )
)

Proof of Theorem sblim
StepHypRef Expression
1 sbim 1953 . 2  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
)
2 sblim.1 . . . 4  |-  F/ x ps
32sbf 1777 . . 3  |-  ( [ y  /  x ] ps 
<->  ps )
43imbi2i 226 . 2  |-  ( ( [ y  /  x ] ph  ->  [ y  /  x ] ps )  <->  ( [ y  /  x ] ph  ->  ps )
)
51, 4bitri 184 1  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1460   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  sbnf2  1981  sbmo  2085
  Copyright terms: Public domain W3C validator