![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbid2v | GIF version |
Description: An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbid2v | ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1464 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | sbid2h 1777 | 1 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 [wsb 1692 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-11 1442 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-sb 1693 |
This theorem is referenced by: bdph 11696 |
Copyright terms: Public domain | W3C validator |