ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbimv Unicode version

Theorem sbimv 1881
Description: Intuitionistic proof of sbim 1941 where  x and  y are distinct. (Contributed by Jim Kingdon, 18-Jan-2018.)
Assertion
Ref Expression
sbimv  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
)
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem sbimv
StepHypRef Expression
1 sbi1v 1879 . 2  |-  ( [ y  /  x ]
( ph  ->  ps )  ->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps ) )
2 sbi2v 1880 . 2  |-  ( ( [ y  /  x ] ph  ->  [ y  /  x ] ps )  ->  [ y  /  x ] ( ph  ->  ps ) )
31, 2impbii 125 1  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  sblimv  1882  sbim  1941
  Copyright terms: Public domain W3C validator