Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbimv | Unicode version |
Description: Intuitionistic proof of sbim 1941 where and are distinct. (Contributed by Jim Kingdon, 18-Jan-2018.) |
Ref | Expression |
---|---|
sbimv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbi1v 1879 | . 2 | |
2 | sbi2v 1880 | . 2 | |
3 | 1, 2 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sblimv 1882 sbim 1941 |
Copyright terms: Public domain | W3C validator |