ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbi1v Unicode version

Theorem sbi1v 1879
Description: Forward direction of sbimv 1881. (Contributed by Jim Kingdon, 25-Dec-2017.)
Assertion
Ref Expression
sbi1v  |-  ( [ y  /  x ]
( ph  ->  ps )  ->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem sbi1v
StepHypRef Expression
1 sb6 1874 . 2  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
2 sb6 1874 . . 3  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  A. x ( x  =  y  ->  ( ph  ->  ps ) ) )
3 ax-2 7 . . . . 5  |-  ( ( x  =  y  -> 
( ph  ->  ps )
)  ->  ( (
x  =  y  ->  ph )  ->  ( x  =  y  ->  ps ) ) )
43al2imi 1446 . . . 4  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  -> 
( A. x ( x  =  y  ->  ph )  ->  A. x
( x  =  y  ->  ps ) ) )
5 sb2 1755 . . . 4  |-  ( A. x ( x  =  y  ->  ps )  ->  [ y  /  x ] ps )
64, 5syl6 33 . . 3  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  -> 
( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ps ) )
72, 6sylbi 120 . 2  |-  ( [ y  /  x ]
( ph  ->  ps )  ->  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ps ) )
81, 7syl5bi 151 1  |-  ( [ y  /  x ]
( ph  ->  ps )  ->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  sbimv  1881
  Copyright terms: Public domain W3C validator