ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbim Unicode version

Theorem sbim 1941
Description: Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sbim  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
)

Proof of Theorem sbim
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbimv 1881 . . . 4  |-  ( [ z  /  x ]
( ph  ->  ps )  <->  ( [ z  /  x ] ph  ->  [ z  /  x ] ps )
)
21sbbii 1753 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ( ph  ->  ps )  <->  [ y  /  z ] ( [ z  /  x ] ph  ->  [ z  /  x ] ps ) )
3 sbimv 1881 . . 3  |-  ( [ y  /  z ] ( [ z  /  x ] ph  ->  [ z  /  x ] ps ) 
<->  ( [ y  / 
z ] [ z  /  x ] ph  ->  [ y  /  z ] [ z  /  x ] ps ) )
42, 3bitri 183 . 2  |-  ( [ y  /  z ] [ z  /  x ] ( ph  ->  ps )  <->  ( [ y  /  z ] [
z  /  x ] ph  ->  [ y  / 
z ] [ z  /  x ] ps ) )
5 ax-17 1514 . . 3  |-  ( (
ph  ->  ps )  ->  A. z ( ph  ->  ps ) )
65sbco2vh 1933 . 2  |-  ( [ y  /  z ] [ z  /  x ] ( ph  ->  ps )  <->  [ y  /  x ] ( ph  ->  ps ) )
7 ax-17 1514 . . . 4  |-  ( ph  ->  A. z ph )
87sbco2vh 1933 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
9 ax-17 1514 . . . 4  |-  ( ps 
->  A. z ps )
109sbco2vh 1933 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ps  <->  [ y  /  x ] ps )
118, 10imbi12i 238 . 2  |-  ( ( [ y  /  z ] [ z  /  x ] ph  ->  [ y  /  z ] [
z  /  x ] ps )  <->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps ) )
124, 6, 113bitr3i 209 1  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sbrim  1944  sblim  1945  sbbi  1947  moimv  2080  nfraldya  2501  sbcimg  2992  zfregfr  4551  tfi  4559  peano2  4572
  Copyright terms: Public domain W3C validator