| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbim | Unicode version | ||
| Description: Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbimv 1918 |
. . . 4
| |
| 2 | 1 | sbbii 1789 |
. . 3
|
| 3 | sbimv 1918 |
. . 3
| |
| 4 | 2, 3 | bitri 184 |
. 2
|
| 5 | ax-17 1550 |
. . 3
| |
| 6 | 5 | sbco2vh 1974 |
. 2
|
| 7 | ax-17 1550 |
. . . 4
| |
| 8 | 7 | sbco2vh 1974 |
. . 3
|
| 9 | ax-17 1550 |
. . . 4
| |
| 10 | 9 | sbco2vh 1974 |
. . 3
|
| 11 | 8, 10 | imbi12i 239 |
. 2
|
| 12 | 4, 6, 11 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: sbrim 1985 sblim 1986 sbbi 1988 moimv 2122 nfraldya 2543 sbcimg 3047 zfregfr 4640 tfi 4648 peano2 4661 |
| Copyright terms: Public domain | W3C validator |