ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbimv GIF version

Theorem sbimv 1918
Description: Intuitionistic proof of sbim 1982 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 18-Jan-2018.)
Assertion
Ref Expression
sbimv ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbimv
StepHypRef Expression
1 sbi1v 1916 . 2 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
2 sbi2v 1917 . 2 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
31, 2impbii 126 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-sb 1787
This theorem is referenced by:  sblimv  1919  sbim  1982
  Copyright terms: Public domain W3C validator