Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sblim | GIF version |
Description: Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sblim.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
sblim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbim 1946 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | sblim.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | sbf 1770 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
4 | 3 | imbi2i 225 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) |
5 | 1, 4 | bitri 183 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 Ⅎwnf 1453 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sbnf2 1974 sbmo 2078 |
Copyright terms: Public domain | W3C validator |