ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sblim GIF version

Theorem sblim 1945
Description: Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sblim.1 𝑥𝜓
Assertion
Ref Expression
sblim ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))

Proof of Theorem sblim
StepHypRef Expression
1 sbim 1941 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
2 sblim.1 . . . 4 𝑥𝜓
32sbf 1765 . . 3 ([𝑦 / 𝑥]𝜓𝜓)
43imbi2i 225 . 2 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
51, 4bitri 183 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wnf 1448  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sbnf2  1969  sbmo  2073
  Copyright terms: Public domain W3C validator