| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbrbif | GIF version | ||
| Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbrbif.1 | ⊢ (𝜒 → ∀𝑥𝜒) |
| sbrbif.2 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbrbif | ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbrbif.2 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | |
| 2 | 1 | sbrbis 2012 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
| 3 | sbrbif.1 | . . . 4 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 4 | 3 | sbh 1822 | . . 3 ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜒) |
| 5 | 4 | bibi2i 227 | . 2 ⊢ ((𝜓 ↔ [𝑦 / 𝑥]𝜒) ↔ (𝜓 ↔ 𝜒)) |
| 6 | 2, 5 | bitri 184 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |