| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbrbif | GIF version | ||
| Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| sbrbif.1 | ⊢ (𝜒 → ∀𝑥𝜒) | 
| sbrbif.2 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | 
| Ref | Expression | 
|---|---|
| sbrbif | ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbrbif.2 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | |
| 2 | 1 | sbrbis 1980 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒)) | 
| 3 | sbrbif.1 | . . . 4 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 4 | 3 | sbh 1790 | . . 3 ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜒) | 
| 5 | 4 | bibi2i 227 | . 2 ⊢ ((𝜓 ↔ [𝑦 / 𝑥]𝜒) ↔ (𝜓 ↔ 𝜒)) | 
| 6 | 2, 5 | bitri 184 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |