ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbrbif GIF version

Theorem sbrbif 1993
Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
sbrbif.1 (𝜒 → ∀𝑥𝜒)
sbrbif.2 ([𝑦 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sbrbif ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem sbrbif
StepHypRef Expression
1 sbrbif.2 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
21sbrbis 1992 . 2 ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))
3 sbrbif.1 . . . 4 (𝜒 → ∀𝑥𝜒)
43sbh 1802 . . 3 ([𝑦 / 𝑥]𝜒𝜒)
54bibi2i 227 . 2 ((𝜓 ↔ [𝑦 / 𝑥]𝜒) ↔ (𝜓𝜒))
62, 5bitri 184 1 ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1373  [wsb 1788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator