ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbrbif GIF version

Theorem sbrbif 1962
Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
sbrbif.1 (𝜒 → ∀𝑥𝜒)
sbrbif.2 ([𝑦 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sbrbif ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem sbrbif
StepHypRef Expression
1 sbrbif.2 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
21sbrbis 1961 . 2 ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))
3 sbrbif.1 . . . 4 (𝜒 → ∀𝑥𝜒)
43sbh 1776 . . 3 ([𝑦 / 𝑥]𝜒𝜒)
54bibi2i 227 . 2 ((𝜓 ↔ [𝑦 / 𝑥]𝜒) ↔ (𝜓𝜒))
62, 5bitri 184 1 ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351  [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator