ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2yz Unicode version

Theorem sbco2yz 1991
Description: This is a version of sbco2 1993 where  z is distinct from 
y. It is a lemma on the way to proving sbco2 1993 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
sbco2yz.1  |-  F/ z
ph
Assertion
Ref Expression
sbco2yz  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco2yz
StepHypRef Expression
1 sbco2yz.1 . . . 4  |-  F/ z
ph
21nfsb 1974 . . 3  |-  F/ z [ y  /  x ] ph
32nfri 1542 . 2  |-  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph )
4 sbequ 1863 . 2  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
53, 4sbieh 1813 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   F/wnf 1483   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by:  sbco2h  1992
  Copyright terms: Public domain W3C validator