ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2yz Unicode version

Theorem sbco2yz 1910
Description: This is a version of sbco2 1912 where  z is distinct from 
y. It is a lemma on the way to proving sbco2 1912 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
sbco2yz.1  |-  F/ z
ph
Assertion
Ref Expression
sbco2yz  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco2yz
StepHypRef Expression
1 sbco2yz.1 . . . 4  |-  F/ z
ph
21nfsb 1895 . . 3  |-  F/ z [ y  /  x ] ph
32nfri 1480 . 2  |-  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph )
4 sbequ 1792 . 2  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
53, 4sbieh 1744 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   F/wnf 1417   [wsb 1716
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496
This theorem depends on definitions:  df-bi 116  df-nf 1418  df-sb 1717
This theorem is referenced by:  sbco2h  1911
  Copyright terms: Public domain W3C validator