ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snidb Unicode version

Theorem snidb 3663
Description: A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
snidb  |-  ( A  e.  _V  <->  A  e.  { A } )

Proof of Theorem snidb
StepHypRef Expression
1 snidg 3662 . 2  |-  ( A  e.  _V  ->  A  e.  { A } )
2 elex 2783 . 2  |-  ( A  e.  { A }  ->  A  e.  _V )
31, 2impbii 126 1  |-  ( A  e.  _V  <->  A  e.  { A } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2176   _Vcvv 2772   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sn 3639
This theorem is referenced by:  snid  3664
  Copyright terms: Public domain W3C validator