ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snidb Unicode version

Theorem snidb 3634
Description: A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
snidb  |-  ( A  e.  _V  <->  A  e.  { A } )

Proof of Theorem snidb
StepHypRef Expression
1 snidg 3633 . 2  |-  ( A  e.  _V  ->  A  e.  { A } )
2 elex 2760 . 2  |-  ( A  e.  { A }  ->  A  e.  _V )
31, 2impbii 126 1  |-  ( A  e.  _V  <->  A  e.  { A } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2158   _Vcvv 2749   {csn 3604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-sn 3610
This theorem is referenced by:  snid  3635
  Copyright terms: Public domain W3C validator