ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snidb GIF version

Theorem snidb 3667
Description: A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
snidb (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})

Proof of Theorem snidb
StepHypRef Expression
1 snidg 3666 . 2 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
2 elex 2785 . 2 (𝐴 ∈ {𝐴} → 𝐴 ∈ V)
31, 2impbii 126 1 (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2177  Vcvv 2773  {csn 3637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sn 3643
This theorem is referenced by:  snid  3668
  Copyright terms: Public domain W3C validator