ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snidb GIF version

Theorem snidb 3696
Description: A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
snidb (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})

Proof of Theorem snidb
StepHypRef Expression
1 snidg 3695 . 2 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
2 elex 2811 . 2 (𝐴 ∈ {𝐴} → 𝐴 ∈ V)
31, 2impbii 126 1 (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  Vcvv 2799  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sn 3672
This theorem is referenced by:  snid  3697
  Copyright terms: Public domain W3C validator